Микросхема LM338T схема включения
Микросхема LM338T представляет собой регулируемый интегральный стабилизатор напряжения, способный работать с показателями от 3 до 40 В, при силе тока до 5 А.
ИМС достаточно популярная, разрабатывается и продаётся TEXAS INSTRUMENTS, National Semiconductor и STMicroelectronics с 1998 года по настоящее время.
Микросхемы работают только с положительным напряжением («positive voltage regulators»).
Стабилизатор выпускается в двух типах корпусов:
- TO-220,
- TO-3.
Внешний вид корпуса обоих обозначен на изображении ниже.
Рис. 1. Внешний вид корпусов стабилизаторов
Габариты зависят от типа корпуса и имеют следующие числовые значения.
Цоколевка обозначена выше:
- Первый контакт – управление,
- Второй – выход (на корпусе TO-3 это внешний кожух),
- Третий – вход.
Ещё изображение для наглядности.
Рис. 2. Изображение стабилизаторов
Типовые схемы включения
Производители рекомендуют выполнять включение LM338T в схемы следующим образом.
Рис. 3. Схема включения LM338T
В зависимости от выбранных значений R1 и R2, а также входного напряжения, можно рассчитать выходное по следующей формуле.
Чтобы лучше понять логику работы устройства, можно изучить его функциональную блок-схему.
Рис. 4. Функциональная блок-схема устройства
STMicroelectronics рекомендует включать стабилизатор LM338T так.
Рис. 5. Схема включения стабилизатора LM338T
При этом выходное напряжение будет рассчитываться по формуле.
При условии, что R1 = 240 Ω. Максимальное выходное напряжение в том случае будет не выше 25 В.
Еще один вариант включения стабилизатора – с защитными диодами.
Рис. 6. Схема включения стабилизатора с защитными диодами
Диоды в этом случае нужны для защиты от скачков напряжения с конденсаторов (C1 и C2).
Уровень напряжения на выходе здесь рассчитывается по формуле.
Использование LM338 в регуляторе температуры
Производитель National Semiconductor рекомендует следующий вариант включения стабилизатора в схему.
Рис. 7. Схема включения стабилизатора в регуляторе температуры
Вариант медленного пятнадцативольтового стабилизатора напряжения
Рис. 8. Вариант стабилизатора напряжения
Все номиналы обозначены на схеме.
Десятивольтовый регулятор с высокой стабильностью
Рис. 9. Десятивольтовый регулятор с высокой стабильностью
Стабилизатор с цифровым управлением
Рис. 10. Стабилизатор с цифровым управлением
R2 определяет максимальное значение выходного напряжения.
Стабилизатор на 15 А
Рис. 11. Стабилизатор на 15 А
Схема должна включаться с минимальной нагрузкой в 100 мА.
Использование LM338 в зарядном устройстве для 12 В аккумуляторов
Схема достаточно проста.
Рис. 12. Схема на LM338 в зарядном устройстве
Питается обозначенный стабилизатор напряжением не менее 18 В.
Усилитель мощности на LM338
Рис. 13. Усилитель мощности на LM338
В качестве аннотаций:
- AV = 1, RF = 10k, CF = 100 pF,
- AV = 10, RF = 100k, CF = 10 pF,
- Полоса пропускания ≥ 100 кГц,
- Искажение ≤ 0,1%.
Напряжение на входе может быть в диапазоне от –0.3 до +40 В.
На выходе – от +1,2 до +32В.
Микросхема рассчитана на работу при температуре не выше 125°С. Но допускается кратковременный нагрев до 300 градусов (не дольше 10 секунд) в корпусе TO-3 и до 260 градусов (не более 4 секунд) в корпусе TO-220. Поэтому рекомендуется установка на радиатор (с пассивным или активным охлаждением).
Ток не должен превышать 5 А (кратковременно допускаются скачки до 7 А).
Полным аналогом микросхемы можно назвать ECG935. В качестве принципиальной замены можно рассмотреть IP338.
Скачать даташиты на микросхему от различных производителей можно здесь и здесь (на английском языке). В них вы найдёте подробные технические параметры и рекомендуемые схемы включения стабилизатора LM338.
Мнения читателей
Влад Новин / 09.01.2021 — 17:01
Случайно вас нашёл. Рад. Благодарю. А семенсеменычей не слушайте.
константин / 23.09.2020 — 13:11
Ник ников / 27.03.2019 — 19:00
А лм 338 не работает от импульсного БП
4149 / 16.03.2019 — 21:03
В самой первой формуле опечатка — (R2/R2).
Ололошка / 20.02.2019 — 21:20
Ну что же вы, Семён семёныч.. Не справочник, а техническая спецификация производителя! Ну или просто даташит
Семён Семёнович / 19.12.2018 — 06:39
Что же, как обезьяны тащите всё с английского языка. Свой ещё не выучили. Зачем слово «доташиты», неужели по русски написать слово «справочники» нельзя? Честное слово — противно!»
Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:
Источник
Стабилизатор на LM317
Трёхвыводной регулируемый стабилизатор lm317 идеально подходит для конструирования несложных источников питания, которые применяются в самых разнообразных устройствах. Простейшая схема включения lm317 в качестве стабилизатора тока имеет высокую надежность и небольшую обвязку. Типовая схема токового драйвера на lm317 для автомобиля представлена на рисунке ниже и содержит всего два электронных компонента: микросхему и резистор.
Помимо данной схемы, существует множество других, более сложных схемотехнических решений для построения драйверов с применением множества электронных компонентов. Детальное описание, принцип действия, расчеты и выбор элементов двух самых популярных схем на lm317 можно найти в данной статье.
Главные достоинства линейных стабилизаторов, построенных на базе lm317, простота сборки и дешевизна используемых в обвязке компонентов. Розничная цена самого ИС составляет не более 1$, а готовая схема драйвера не нуждается в наладке. Достаточно замерить мультиметром выходной ток, чтобы убедиться в его соответствии с расчётными данными.
К недостаткам ИМ lm317 можно отнести сильный нагрев корпуса при выходной мощности более 1 Вт и, как следствие, необходимость в отводе тепла. Для этого в корпусе типа ТО-220 предусмотрено отверстие под болтовое соединение с радиатором. Также недостатком приведенной схемы можно считать максимальный выходной ток , не более 1,5 А, что устанавливает ограничение на количество светодиодов в нагрузке. Однако этого можно избежать путём параллельного включения нескольких стабилизаторов тока или использовать вместо lm317 микросхему lm338 или lm350, которые рассчитаны на более высокие токи нагрузки.
LM317 и LM337. Особенности применения. | РадиоГазета
В радиолюбительской практике широкое применение находят микросхемы регулируемых стабилизаторов LM317 и LM337. Свою популярность они заслужили благодаря низкой стоимости, доступности, удобного для монтажа исполнению, хорошим параметрам. При минимальном наборе дополнительных деталей эти микросхемы позволяют построить стабилизированный блок питания с регулируемым выходным напряжением от 1,2 до 37 В при максимальном токе нагрузки до 1,5А.
Но! Часто бывает, при неграмотном или неумелом подходе радиолюбителям не удаётся добиться качественной работы микросхем, получить заявленные производителем параметры. Некоторые умудряются вогнать микросхемы в генерацию.
Как получить от этих микросхем максимум и избежать типовых ошибок?
Об этом по-порядку:
Микросхема LM317 является регулируемым стабилизатором ПОЛОЖИТЕЛЬНОГО напряжения, а микросхема LM337 – регулируемым стабилизатором ОТРИЦАТЕЛЬНОГО напряжения.
Обращаю особое внимание, что цоколёвки у этих микросхем различные!
Даташит производителя: datasheet LM317 (pdf-формат 1041 кб), datasheet lm337 (pdf-формат 43кб).
Цоколёвка LM317 и LM337:
Типовая схема включения LM317
Увеличение по клику
Выходное напряжение схемы зависит от номинала резистора R1 и рассчитывается по формуле:
Uвых=1,25*(1+R1/R2)+Iadj*R1
где Iadj ток управляющего вывода. По даташиту составляет 100мкА, как показывает практика реальное значение 500 мкА.
Для микросхемы LM337 нужно изменить полярность выпрямителя, конденсаторов и выходного разъёма.
Но скудное даташитовское описание не раскрывает всех тонкостей применения данных микросхем.
Итак, что нужно знать радиолюбителю, чтобы получить от этих микросхем МАКСИМУМ!1. Чтобы получить максимальное подавление пульсаций входного напряжения необходимо:
- Увеличить (в разумных пределах, но минимум до 1000 мкФ) емкость входного конденсатора C1. Максимально подавив пульсации на входе, мы получим минимум пульсаций на выходе.
- Зашунтировать управляющий вывод микросхемы конденсатором на 10мкФ . Это увеличивает подавление пульсаций на 15-20дБ. Установка емкости больше указанного значения ощутимого эффекта не даёт.
Схема примет вид:
Увеличение по клику
2. При выходном напряжении больше 25В в целях защиты микросхемы, для быстрого и безопасного разряда конденсаторов необходимо подключить защитные диоды:
увеличение по клику
Важно: для микросхем LM337 полярность включения диодов следует поменять!
3. Для защиты от высокочастотных помех электролитические конденсаторы в схеме необходимо зашунтировать плёночными конденсаторами небольшой ёмкости.
Получаем итоговый вариант схемы:
Увеличение по клику
4. Если посмотреть внутреннюю структуру микросхем, можно увидеть, что внутри в некоторых узлах применены стабилитроны на 6,3В. Так что нормальная работа микросхемы возможна при входном напряжении не ниже 8В!
Хотя в даташите и написано, что разница между входным и выходным напряжениями должна составлять минимум 2,5-3 В, как происходит стабилизация при входном напряжении менее 8В, остаётся только догадываться.
5
Особое внимание следует уделить монтажу микросхемы. Ниже приведена схема с учётом разводки проводников:. Увеличение по клику
Увеличение по клику
Пояснения к схеме:
- длинна проводников (проводов) от входного конденсатора C1 до входа микросхемы (А-В) не должна превышать 5-7 см. Если по каким-то причинам конденсатор удалён от платы стабилизатора, в непосредственной близости от микросхемы рекомендуется установить конденсатор на 100 мкФ.
- для снижения влияния выходного тока на выходное напряжение (повышение стабильности по току) резистор R2 (точка D) необходимо подсоединять непосредственно к выходному выводу микросхемы или отдельной дорожкой/проводником ( участок C-D). Подсоединение резистора R2 (точка D) к нагрузке (точка Е) снижает стабильность выходного напряжения.
- проводники до выходного конденсатора (С-E) также не следует делать слишком длинными. Если нагрузка удалена от стабилизатора, то на стороне нагрузки необходимо подключить байпасный конденсатор (электролит на 100-200 мкФ).
- так же с целью снижения влияния тока нагрузки на стабильность выходного напряжения «земляной» (общий) провод необходимо развести «звездой» от общего вывода входного конденсатора (точка F).
Выполнив эти нехитрые рекомендации, Вы получите стабильно работающее устройство, с теми параметрами, которые ожидались.
Удачного творчества!
Импульсный стабилизатор тока
Поскольку экономия энергии во многих приложениях является решающей, разработчики компонентов, схемотехники стараются снизить влияние этих недостатков, и, зачастую, преуспевают в этом.
Схемы импульсных преобразователей
Стабилизатор на базе импульсного преобразователя имеет устройство, регулирующее работу ключа, в зависимости от нагрузки. Стабилизатор напряжения регистрирует напряжение на нагрузке и изменяет работу ключа (схема «а»). Стабилизатор тока измеряет ток через нагрузку, например с помощью маленького измерительного сопротивления Ri (схема «б»), включенного последовательно с нагрузкой.
В современных ключевых преобразователях в качестве ключа обычно используется MOSFET транзистор.
Понижающий преобразователь
Рассмотренный выше вариант преобразователя называется понижающим, поскольку напряжение на нагрузке всегда ниже напряжения источника питания.
Поскольку в дросселе постоянно течёт однонаправленный ток, требования к выходному конденсатору могут быть снижены, дроссель с выходным конденсатором играют роль эффективного LC фильтра. В некоторых схемах стабилизаторов тока, например для светодиодов, выходной конденсатор может отсутствовать вообще. В западной литературе понижающий преобразователь называется Buck converter.
Повышающий преобразователь
Схема импульсного стабилизатора, приведённая ниже, также работает на основе дросселя, однако дроссель всегда подключен к выходу источника питания. Когда ключ разомкнут, питание поступает через дроссель и диод на нагрузку. Когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС добавляется к ЭДС источника питания и напряжение на нагрузке возрастает.
В отличие от предыдущей схемы, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе повышающе-понижающий преобразователь называется Boost converter.
Инвертирующий преобразователь
Как и в предыдущей схеме, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе инвертирующий преобразователь называется Buck-Boost converter.
Применение импульсного конвертера в качестве стабилизатора тока
Большинство импульсных блоков питания выпускаются с стабилизацией выходного напряжения. Типичные схемы таких блоков питания, особенно мощных, кроме обратной связи по выходному напряжению, имеют схему контроля тока ключевого элемента, например резистор с малым сопротивлением. Такой контроль позволяет обеспечивать режим работы дросселя. Простейшие стабилизаторы тока используют этот элемент контроля для стабилизации выходного тока. Таким образом, стабилизатор тока оказывается даже проще стабилизатора напряжения.
Рассмотрим схему импульсного стабилизатора тока для светодиода на базе микросхемы NCL30100 от известного производителя электронных компонентов On Semiconductor:
Схема понижающего преобразователя работает в режиме неразрывного тока с внешним ключом. Схема выбрана из множества других, поскольку она показывает, насколько простой и эффективной может быть схема импульсного стабилизатора тока с внешним ключом. В приведённой схеме, управляющая микросхема IC1 управляет работой MOSFET ключа Q1. Поскольку преобразователь работает в режиме неразрывного тока, выходной конденсатор ставить необязательно. В многих схемах датчик тока устанавливается в цепи истока ключа, однако, это снижает скорость включения транзистора. В приведённой схеме датчик тока R4 установлен в цепи первичного питания, в результате схема получилась простой и эффективной. Ключ работает на частоте 700 кГц, что позволяет установить компактный дроссель. При выходной мощности 7 Ватт, входном напряжении 12 Вольт при работе на 700 мА (3 светодиода), эффективность устройства более 95%. Схема стабильно работает до 15 Ватт выходной мощности без применения дополнительных мер по отводу тепла.
Ещё более простая схема получается с использованием микросхем ключевых стабилизаторов с встроенным ключом. Например, схема ключевого стабилизатора тока светодиода на базе микросхемы CAV4201/CAT4201:
Источник
Печатные платы
Только шелкография: pcb_current_source_silk.pdfТолько дорожки: pcb_current_source_solder.pdfДорожки и шелкография: pcb_current_source_solder_silk.pdf
Только шелкография: pcb_current_source_silk.pdfТолько дорожки: pcb_current_source_improved_solder.pdfДорожки и шелкография: pcb_current_source_improved_solder_silk.pdf
Всё уместилось на маленьком кусочке (3 на 2 см) фольгированного текстолита, тепло отводится путём крепления всей платы на кусок алюминия винтами, спроектирована она с расчётом на крепёж M2, чтобы легко и надёжно закрепить её или попросту приклеить к теплоотводу теплопроводящим клеем (Stars 922). При необходимости её можно легко уменьшить почти в два раза раза два.
Светодиодные ленты
Светодиодная лента представляет собой цепь соединённых светодиодов. Соединены они не просто так, например обычная 12V лента состоит из сегментов по 3 светодиода в каждом. Сегменты соединены между собой параллельно, то есть на каждый приходят общие 12 Вольт. Внутри сегмента светодиоды соединены последовательно, а ток на них ограничивается общим резистором (могут стоять два для более эффективного теплоотвода): Таким образом достаточно просто подать 12V от источника напряжения на ленту и она будет светиться. За простоту и удобство приходится платить эффективностью. Простая математика: три белых светодиода, каждому нужно по ~3.2V, суммарно это 9.6V. Подключаем ленту к 12V и понимаем, что 2.5V у нас просто уходят в тепло на резисторах. И это в лучшем случае, если резистор подобран так, чтобы светодиод горел на полную яркость.
Подключаем к Arduino
Здесь всё очень просто: смотрите предыдущий урок по управлению нагрузкой постоянного тока. Управлять можно через реле, транзистор или твердотельное реле. Нас больше всего интересует плавное управление яркостью, поэтому продублирую схему с полевым транзистором:
Конечно же, можно воспользоваться китайским мосфет-модулем! Пин VCC кстати можно не подключать, он никуда не подведён на плате.
Управление
Подключенная через транзистор лента управляется точно так же, как светодиод в предыдущей главе, то есть все примеры кода с миганием, плавным миганием и управление потенциометром подходят к этой схеме. Про RGB и адресные светодиодные ленты мы поговорим в отдельных уроках.
Питание и мощность
Светодиодная лента потребляет немаленький ток, поэтому нужно убедиться в том, что выбранный блок питания, модуль или аккумулятор справится с задачей. Но сначала обязательно прочитайте урок по закону Ома! Потребляемая мощность светодиодной ленты зависит от нескольких факторов:
- Яркость. Максимальная мощность будет потребляться на максимальной яркости.
- Напряжение питания (чаще всего 12V). Также бывают 5, 24 и 220V ленты.
- Качество, тип и цвет светодиодов: одинаковые на вид светодиоды могут потреблять разный ток и светить с разной яркостью.
- Длина ленты. Чем длиннее лента, тем больший ток она будет потреблять.
- Плотность ленты, измеряется в количестве светодиодов на метр. Бывает от 30 до 120 штук, чем плотнее – тем больший ток будет потреблять при той же длине и ярче светить.
Лента всегда имеет характеристику мощности на погонный метр (Ватт/м), указывается именно максимальная мощность ленты при питании от номинального напряжения. Китайские ленты в основном имеют чуть меньшую фактическую мощность (в районе 80%, бывает лучше, бывает хуже). Блок питания нужно подбирать так, чтобы его мощность была больше мощности ленты, т.е. с запасом как минимум на 20%.
- Пример 1: нужно подключить 4 метра ленты с мощностью 14 Ватт на метр, лента может работать на максимальной яркости. 14*4 == 56W, с запасом 20% это будет 56*1.2 ~ 70W, ближайший блок питания в продаже будет скорее всего на 100W.
- Пример 2: берём ту же ленту, но точно знаем, что яркость во время работы не будет больше половины. Тогда можно взять блок на 70 / 2 == 35W.
Важные моменты по току и подключению:
- Подключение: допустим, у нас подключено ленты на 100W. При 12 Вольтах это будет 8 Ампер – весьма немаленький ток! Ленту нужно располагать как можно ближе к блоку питания и подключать толстыми (2.5 кв. мм и толще) проводами. Также при создании освещения есть смысл перейти на 24V ленты, потому что ток в цепи будет меньше и можно взять более тонкие провода: если бы лента из прошлого примера была 24-Вольтовой, ток был бы около 4 Ампер, что уже не так “горячо”.
- Дублирование питания: лента сама по себе является гибкой печатной платой, то есть ток идёт по тонкому слою меди. При подключении большой длины ленты ток будет теряться на сопротивлении самой ленты, и чем дальше от точки подключения – тем слабее она будет светить. Если требуется максимальная яркость на большой длине, нужно дублировать питание от блока питания дополнительными проводами, или ставить дополнительные блоки питания вдоль ленты. Дублировать питание рекомендуется каждые 2 метра, потому что на такой длине просадка яркости становится заметной уже почти на всех лентах.
- Охлаждение: светодиоды имеют не 100% КПД, плюс ток в них ограничивается резистором, и как результат – лента неслабо греется. Рекомендуется приклеивать яркую и мощную ленту на теплоотвод (алюминиевый профиль). Так она не будет отклеиваться и вообще проживёт гораздо дольше.
Виды стабилизирующих устройств
По способу ограничения силы тока выделяются устройства линейного и импульсного типа.
Так как напряжение на светодиоде – неизменная величина, то стабилизаторы тока часто считают стабилизаторами мощности LED. Фактически последняя прямо пропорциональна изменению напряжения, что характерно для линейной зависимости.
Линейный стабилизатор нагревается тем больше, чем больше прилагается к нему напряжения. Это его главный недочёт. Преимущества данной конструкции обусловлены:
- отсутствием электромагнитных помех;
- простотой;
- низкой стоимостью.
Более экономичными устройствами являются стабилизаторы на основе импульсного преобразователя. В этом случае мощность прокачивается порционно – по мере необходимости для потребителя.
Релейные
Релейный стабилизатор напряжения
Оптимальный вариант для частных и дачных домов, квартир. На трансформаторе установлено несколько магнитных обмоток. В момент перепада напряжения между ними происходит переключение, что позволяет сохранить поток напряжения в прежнем режиме. К недостаткам относят:
- изменение потока энергии в ступенчатом режиме (резко, прерывисто);
- искривление синусоиды потока напряжения;
- небольшая мощность на моменте отдачи.
Стоимость подобных устройств значительно ниже других моделей стабилизаторов. Отзывы владельцев хорошие, прибора оказывается достаточно для домашних сетей.
Электронные
Тиристорный регулятор напряжения РСТ
Различают два типа стабилизаторов электронного «наполнения» — симисторные и тиристорные. В первых переключение между обмотками в автоматическом режиме осуществляет небольшой механизм – симистор. КПД прибора высокое, срабатывает быстро. Существенный плюс для бытового использования – бесшумность работы. Второй вид не так эффективен, обычно используется для стабилизации домашних сетей без большого напряжения. Наиболее заметный недостаток – стоимость.
Электромеханические
Другие названия – сервомоторные, сервоприводные. Принцип работы – с помощью электропривода угольный электрод перемещается по обмоткам, создавая бесперебойное напряжение. Часто покупается для бытовых нужд и небольших помещений (дом, дача, офис). Плюсы – цена, компактность, плавное переключение. Минусы – шум, малая скорость переключения.
Феррорезонансные
Феррорезонансный стабилизатор
В последние годы редко используется из-за появления более современных устройств. Эффект феррорезонанса возникает в системе взаимодействия трансформатора и конденсатора. Устройства крупногабаритные, шумные, не работают при резких и значительных перегрузках. Преимущества – длительный срок эксплуатации, возможность использования в помещениях с высокой влажностью.
Инверторные
Устройства данного типа являются мощными и дорогостоящими. Используются в быту и крупных производственных помещениях. Основное отличие – кварцевый генератор и контроллер, которые преобразуют напряжение на входе в постоянный ток, а на выходе – в переменный. Одновременное двойное формирование позволяет работать с различным уровнем тока – от 115 до 300 Вольт. Преимущества – отсутствие шума, малый размер, быстрое переключение и регулирование, другие дополнительные возможности (например, защита бытовой техники от чрезмерного напряжения).
Стабилизатор на PT4115
PT4115 – унифицированная микросхема, разработанная компанией PowTech специально для построения драйверов для мощных светодиодов, которую можно использовать также и в автомобиле. Типовая схема включения PT4115 и формула расчета выходного тока приведены на рисунке ниже.
Понять, почему так происходит, а также ознакомиться с более детальным расчетом и выбором остальных элементов схемы можно здесь. Известность микросхема получила, благодаря своей многофункциональности и минимальному набору деталей в обвязке. Чтобы зажечь светодиод мощностью от 1 до 10 Вт, автолюбителю нужно всего лишь рассчитать резистор и выбрать индуктивность из стандартного перечня.
PT4115 имеет вход DIM, который значительно расширяет её возможности. В простейшем варианте, когда нужно просто зажечь светодиод на заданную яркость, он не используется. Но если необходимо регулировать яркость светодиода, то на вход DIM подают либо сигнал с выхода частотного преобразователя, либо напряжение с выхода потенциометра. Существуют варианты задания определенного потенциала на выводе DIM с помощью МОП-транзистора. В этом случае в момент подачи питания светодиод светится на полную яркость, а при запуске МОП-транзистора светодиод уменьшает яркость наполовину.
К недостаткам драйвера светодиодов для авто на базе PT4115 можно отнести сложность подбора токозадающего резистора Rs из-за его очень малого сопротивления. От точности его номинала напрямую зависит срок службы светодиода.
Обе рассмотренные микросхемы прекрасно зарекомендовали себя в конструировании драйверов для светодиодов в автомобиле своими руками. LM317 – давно известный проверенный линейный стабилизатор, в надежности которого нет сомнений. Драйвер на его основе подойдёт для организации подсветки салона и приборной панели, поворотов и прочих элементов светодиодного тюнинга в авто.
PT4115 – более новый интегральный стабилизатор с мощным MOSFET-транзистором на выходе, высоким КПД и возможностью диммирования.
Электрические характеристики LM338
Высыпаем содержимое всех пакетиков на стол. Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Второй параметр — ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум мкА, но в реальных условиях он может достигать мкА.
Попробуем немного уменьшить напряжение.
И пользуясь случаем задам вопрос.
Такое чувство, что комплектовал набор не сильно трезвый китаец : Следующим этапом была установка огромных конденсаторов, сбрасываемого предохранителя 30V3A, а так же переключателя на выходные контакты.
В сегодняшнем обзоре речь пойдет об очередном конструкторе после сборки которого получится понижающий модуль на LMK, а проще говоря — регулируемый блок питания : Причиной его покупки стал мой интерес к конструкторам подобного рода, а так же возможность использовать собранный гаджет в последующем.
Попробуем немного уменьшить напряжение. Разве что за время транспортировки ножки почти всех элементов погнулись, но на работоспособности конструкции это никак не скажется.
Получается небольшая кучка разнообразных радиодеталей.
Мощный лабораторный блок питания своими руками