Самый опасный цвет и его влияние на глаза
Чем же так опасен спектр излучения от светодиодной лампочки? Если его разложить на составляющие, то легко заметить, что при длине волны в 480нм наблюдается очень большой провал.
Левая
сторона от провала характеризует синий светодиод, правая сторона – желтый
люминофор, которым светодиод собственно и покрыт.
У естественного солнечного света никаких подобных провалов не наблюдается.
Чем же
опасна эта “яма”? Экспериментально установлено, что свет с длиной волны 480нм, попадая
на ганглиозные клетки, напрямую отвечает за скорость реакции по уменьшению
диаметра зрачка, то есть его закрытие.
Таким
образом из-за провала светодиодной лампы в данном диапазоне, наш зрачок
остается более открытым, пропуская на себя весь остальной спектр излучения.
В итоге
вместо фокусировки появляется ощущение некой размытости. Далее глазные мышцы
нагружаются и фокус восстанавливается.
Такая постоянная нагрузка на глаза – это первый звоночек к близорукости.
Помимо провала плохо сказывается и синий пик. За счет него в глазном яблоке синтезируется ретиналь — химическая основа зрения, с помощью которого сетчатка глаза преобразует свет в метаболическую энергию.
Однако при избыточном накоплении (пик этому как раз способствует), все может привести к частичной гибели клеток сетчатки.
Также избыток ретиналя провоцирует деформацию глазного яблока и способствует развитию миопии.
Именно
поэтому все производители давным-давно стремились разработать светодиодную
лампочку со спектром очень близким к солнечному (без провалов и пиков). И надо
признать, определенные успехи у них в этом деле наметились.
От
устаревшей технологии “синий кристалл – желтый люминофор” отказался даже ее
изобретатель Сюдзи Накамура. Его рекомендация – как можно быстрее переходить на
источники с биологически адекватными спектрами света.
Приятно сознавать, что не так давно массовый выпуск подобных «солнечных» лампочек под брендом Remez начался и у нас в стране.
Особенно опасны светодиоды без рассеивателей. Были проведены эксперименты, которые показали, что утомляемость и работоспособность под такими светильниками снижалась практически вдвое по сравнению с “голыми” люминесцентными.
А они в свою
очередь далеко не подарок. Рассеиватель повышал работоспособность по отношению
к люминесцентным всего на 12%.
То есть вы понимаете,
насколько важно иметь аналог солнечного спектра у себя дома и на работе
Однако не
все разделяют мнение об опасности синего светодиодного света. Основной аргумент
в споре – малая энергия фотонов.
Даже если зрачок и будет сужен меньше, чем положено, энергия светового потока от синего светодиода якобы недостаточна для нанесения существенного вреда глазу. Если конечно вы не поставите перед собой лампу мощностью в 1кВт.
Однако не забывайте при этом, что накопительный эффект при длительном пребывании под таким светом тоже никто не отменял.
Влияние световой пульсации на организм человека
Еще в 60-х годах ХХ в. проводились исследования по обнаружению влияния пульсации света на электрическую активность мозга человека . Авторы предположили, что отрицательное действие на человека однофазно включенных люминесцентных ламп с использованием электромагнитного балласта может быть обусловлено изменением основной ритмической активности нейронов. В ходе исследования у группы испытуемых во время просмотра светового экрана снимали показания электрической активности мозга. Снятые электроэнцефалограммы были разложены на спектр. При отсутствии пульсации света преобладающими частотами были 9–10 и 15–20 Гц. Это так называемые альфа- и тэта-ритмы, свойственные человеческому мозгу в нормальном состоянии. Частоты выше 120 Гц в таком спектре представлены слабо (рис. 2). Когда же испытуемым были показаны пульсации на световом экране, спектр изменялся следующим образом: альфа-ритм значительно подавлялся, амплитуды присущих ему частот снижались, зато появлялся пик на частоте, равной частоте наблюдаемых световых пульсаций: проявлялся навязываемый ритм.
Рис. 2. Фрагмент записи одного из опытов:
а) спектр ЭЭГ в темноте (фон);
б) спектр ЭЭГ при освещении светом, мелькающим с частотой 120 Гц.
1 — ЭЭГ затылочной области мозга,
2 — частотный спектр ЭЭГ, выдаваемый анализатором Уолтера
Результаты проведенных экспериментов показали следующее:
- Мозг человека воспринимает пульсации света, не ощущаемые визуально (как по частоте, так и по амплитуде).
- Пульсации света частотой выше 100 Гц начинают влиять на работу мозга уже при глубине 2–3%.
- Пульсации глубиной больше 20% дают тот же эффект, что и 100% пульсации.
- При уровне мерцаний больше 5–8% и при частотах 100 Гц и более нормальная работа мозга нарушается.
- Мозг не воспринимает пульсации света частотой выше 300 Гц.
- Мозг способен усваивать до четырех частот раздражающего воздействия одновременно. Отсюда и такие жесткие требования СанПиН к КП при работе на ПЭВМ. В таких помещениях на работу мозга, кроме пульсаций света, влияет еще и излучение монитора, которое также пульсирует. Работа стала основополагающей при последующем создании различных нормативных документов.
В исследовании лаборатории промышленного освещения Научно-исследовательского института охраны труда (г. Иваново), проведенном под руководством Ильиной Е. И. и Частухиной Т. Н. , говорится, что неблагоприятное действие пульсации на организм человека возрастает с увеличением ее глубины. Появляется напряжение в глазах, усталость, трудность сосредоточения на сложной работе, головная боль. Большинство исследователей отмечает отрицательное воздействие пульсации света на работоспособность человека как при длительном пребывании в условиях пульсирующего освещения, так и при кратковременном, в течение 15–30 мин.
Нельзя не упомянуть и о таком явлении, как стробоскопический эффект — кажущееся изменение или прекращение движения предмета, освещаемого светом, периодически изменяющимся с определенной частотой . Он возникает тогда, когда частота мерцания светильника является кратной или совпадает с частотой движений деталей рабочего оборудования, из-за чего кажется, что те медленно двигаются в обратном направлении или не двигаются вообще. Например, неподвижными могут казаться вращающийся вал фрезерного станка, работающая циркулярная пила и др. По итогам расследования производственных несчастных случаев «виновным» зачастую оказывается именно стробоскопический эффект, который может возникнуть уже при коэффициенте пульсации в 10%.
Многие международные и российские исследования доказали, что пульсация освещения оказывает негативное воздействие также и на центральную нервную систему, причем в большей степени — непосредственно на нервные элементы коры головного мозга и фоторецепторные элементы сетчатки.
Спектр фитоламп и УФ
Так какой же
свет из этого разнообразия спектров, больше всего нужен растениям? И самое
главное, как он влияет на нас?
Ученые
экспериментальным способом доказали, что не все спектры в этом деле одинаково
полезны. Главным критерием для изучения стала интенсивность фотосинтеза.
Выяснилось,
что углекислый газ лучше всего поглощался в красных лучах и сине-фиолетовых.
В зеленом
спектре, данный процесс был минимален. Фактически большая часть зеленого света
не поглощается растениями, а отражается. Поэтому то мы их и видим зелеными.
Получается,
что из общего спектра, растениями наиболее хорошо поглощается свет с диапазоном
волны 440-460нм (синий) и 635-665нм (красный).
Синий свет
влияет на увеличение зеленой массы. Какой величины будут листья, как быстро они
будут расти.
Красный
отвечает за процессы:
прорастания
цветения
созревания плодов
Большинство
светодиодных фитоламп, как раз-таки и содержат в своем спектре ярко выраженные
пики в синей и красной областях. Это благоприятно сказывается на росте.
В лампочках эти спектры неизменны, в отличие от солнца. На Земле в течение дня, в зависимости от атмосферы, происходит их поочередное изменение. Так в восходящем солнышке, растения получают больше синих лучей.
А на закате – красных.
По этому принципу работают и биоритмы. Синий свет пробуждает растения. А красный заставляет засыпать.
Однако
многих такой красно-синий оттенок в фитолампах раздражает.
И тут нужно сделать главное замечание – опасного ультрафиолета в светодиодных фитолампочках нет.
Есть конечно отдельные виды специализированных светодиодов, не применяемых для выращивания зелени, но даже они излучают очень мягкий ультрафиолет 380-390нм. По большей части это даже слегка видимый и различимый синий свет.
Под ним невозможно загореть или высушить лак для ногтей.
В обычных светодиодных источниках света – ультрафиолета нет как такового. А значит все страшилки про выжигание роговицы или сетчатки ультрафиолетом от светодиодных ламп — это миф.
Как убрать пульсацию в светодиодной лампе?
Во многие светодиодные лампы китайского происхождения устанавливают примитивный блок питания (БП), который назвать драйвером невозможно. Он состоит из RC-цепочки, диодного моста и фильтрующего конденсатора малой ёмкостью, не более 10 мкФ. Именно из-за отсутствия качественного сглаживающего фильтра постоянное напряжение на выходе пульсирует с частотой менее 300 Гц. Ниже представлена схема подобной лампы. Улучшить качество выходного сигнала можно путём замены электролитического конденсатора на аналог большей ёмкости. В результате амплитуда переменной составляющей сигнала снизится в несколько раз. Однако это не всегда возможно, ввиду большого размера конденсатора необходимой емкости.
Основные требования к драйверу – обеспечение светодиодов лампы стабильным током и миниатюрные размеры, необходимые для размещения схемы внутри цоколя. Поэтому самым надёжным способом значительно снизить коэффициент пульсации, является замена некачественного блок питания на драйвер со встроенным ШИМ-регулятором.
Если по субъективным причинам не удаётся избавиться от вредного мерцания светодиодной лампы, то рекомендуется установить её в помещении с наименьшим количеством включений. Наметив очередную покупку светодиодной лампы, делайте выбор в пользу сертифицированной продукции известных брендов.
Читайте так же
(55 votes, average: 4,51 out of 5)
Коэффициент пульсации освещенности в осветительных установках. Метод расчета.
Пульсации светового потока возникают при питании источников света переменным или импульсным током. Человек зрительно различает пульсации светового потока с частотой, меньшей критической частоты слияния мельканий, лежащейв диапазоне от 35 до 60 Гц в зависимости от области сетчатки глаза, воспринимающей излучение: для фовеальной области КЧСМ составляет 40-55 Гц, для парафовеальной она возрастает до 55-60 Гц,на крайней периферии снижается до 35-40 Гц. Таким образом, пульсации светового потока сильнее заметны периферическим зрением.
Опубликовано в журнале Lumen&ExpertUnion №3/2013
Выпускник кафедры «Светотехника и источники света» Московского энергетического института. Инженер-проектировщик ООО «СТК «ГЕЛИОСИТИ». Опыт работы по специальности с 2007 года. Принимал участие в реализации проектов освещения объектов ОАО «Северсталь» и ОАО «АК «Транснефть», цехов Калужского турбинного завода, Кирсинского кабельного завода, Ярославского завода резиновых технических изделий, склада Туринского целлюлозно-бумажного завода, территории ТЦ «Садовод» (14 км МКАД), спортивного зала художественной гимнастики учебно-тренировочного центра «Новогорск», наружного освещения широкого молла Туапсинского морского торгового порта и др.
Видимые глазом пульсации вызывают явное раздражение, но также отрицательное влияние на зрительную работоспособность и нервную систему оказывают неразличимые органом зрения пульсации светового потока, имеющие частоту до 300 Гц. К наиболее опасным последствиям высоких пульсаций светового потока относится возникновение стробоскопического эффекта – иллюзии неподвижности или замедленного движения вращающихся объектов, что может привести к производственным травмам. Повышенная зрительная утомляемость и опасность травматизма диктуют необходимость нормирования величины пульсаций светового потока, который в итоге и влияет на коэффициент пульсации освещенности на объекте (Кп).
КАКОЙ КОЭФФИЦИЕНТ ПУЛЬСАЦИИ ДОПУСТИМ?
Существуют гигиенические требования по отношению к пульсациям ламп и оборудования, превышение которых чревато негативными последствиями и ухудшением здоровья. Так, для освещенности рабочего места, коэффициент пульсации ламп должен быть не более 20%, а для работы с персональным компьютером, планшетом или хобби с мелкими деталями, пульсации не должны превышать 5%.
Российские нормы регламентируют значение Kп в диапазоне от 5 до 20% в зависимости от точности зрительной работы. Согласно действующим гигиеническим нормам уровень пульсаций светового потока должен быть:
- в помещениях, оборудованных компьютерами — не более 5% (СанПиН 2.2.2/2.4.1340-03);
- в детских дошкольных учреждениях — 10% (СанПиН 2.2.1/2.1.1.1278-03);
- в учреждениях общего образования, начального, среднего и высшего специального образования — 10% (СанПиН 2.2.1/2.1.1.1278-03).
Следует заметить, что с 1 января 2013 года действует новый ГОСТ Р 54945-2012 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности», в котором говорится о том, что «коэффициент пульсации освещенности учитывает пульсацию светового потока до 300 Гц. Частота пульсации свыше 300 Гц не оказывает влияния на общую и зрительную работоспособность».
В общем и целом, несмотря на то, что российские санитарные нормы допускают глубину пульсации до 20%, оптимальной для комфорта и безопасности человека была признана пульсация, чей коэффициент не превышает 5%. Такие показатели способны обеспечить только светодиодные светильники и лампы с качественным источником питания (драйвером).
Мониторы и смартфоны
Кстати, немного отвлекаясь от лампочек, стоит заметить, что почти у каждого второго монитора пульсации выше 30%, а у некоторых и под 100% можно найти.
Поэтому домашние лампочки с 10%, это еще цветочки в нашей повседневной жизни. Вы например, каждый день проводите минимум час или два, уткнувшись в экран смартфона. А они пульсируют как кислотная дискотека.
Многие после этого даже удивляются откуда «ноги растут» и кто виноват в постепенном ухудшении их здоровья.
Еще один любопытный момент, касающийся предельных цифр, заключается в следующем — для вашего мозга нет большой разницы, сидите вы под лампочкой с коэффициентом в 20% или в 100%.
В обоих случаях уровень расстройства будет схожим. Может отличаться только время воздействия эффекта.
Пульсация освещения – как влияет на здоровье человека?
Широко распространено мнение, что человеческий глаз чувствует пульсацию освещения частота которой не превышает нескольких десятков Герц. На этом допущении построено воспроизведение видеоизображений в кино и телевидении – там частота смены кадров составляет 25 Гц, 50Гц и более, что воспринимается глазом человека как целостное во времени, плавно изменяющееся изображение. Дело в том, что мозг человека перестает успевать полноценно обрабатывать ту часть поступающей ему от органов зрения информации, которая изменяется с частотой выше нескольких десятков Герц.
Иными словами, если в воспринимаемой органами зрения человека информации присутствует пульсация освещённости или яркости, частотой ниже указанных, то она воздействует непосредственно на сетчатку глаза человека, затем поступает в зрительный тракт и уже через наружное коленчатое тело, зрительную радиацию, анализируется в первичной зрительной коре. В результате, мы можем описать условия получения зрительной информации: яркость и контраст изображения, цвета и оттенки, есть ли пульсации яркости или освещённости. Если же параметры изображения нас не устраивают, то мы пытаемся как-то приспособиться к их восприятию и, в конце концов, сознательно ограничиваем время визуального восприятия этой информации ввиду дискомфорта.
Однако медицинские исследования показали, что органы зрения и мозг человека продолжают воспринимать и реагировать на изменения воспринимаемой зрительной информации вплоть до частоты 300Гц. Такие изменения в воспринимаемой органами зрения информации оказывают уже не визуальное воздействие. В этом случае, свет, попадающий в глаз, проделывает путь к супрахиазматическим клеткам и паравентрикулярным ядрам гипоталамуса, а также к шишковидной железе. И тогда свет управляет уже нашим гормональным фоном, который влияет на циркадные (суточные) ритмы, эмоциональную сферу, работоспособность и многие другие аспекты жизнедеятельности. Многие, наверное, уже сталкивались с таким не визуальным воздействием пульсаций искусственного освещения в виде ощущения необъяснимого чувства дискомфорта, усталости или недомогания во, вроде бы, хорошо и ярко освещённых помещениях или при работе с компьютером.
Самое опасное то что, пульсация освещения – это то, что мы не чувствуем напрямую его влияния на наш организм и не можем принять меры для уменьшения опасных последствий такого воздействия на наше здоровье. Не визуальное воздействие света может приводить к расстройству биологических ритмов человека и к “циркадным стрессам”, которые, в свою очередь, могут приводить к развитию таких заболеваний, как депрессии, бессонница, патологии сердечно-сосудистой системы и рак. По-видимому, не визуальное воздействие света на организм человека, заметно более глубокое, чем визуальное, хотя , оно ещё очень мало изучено.
Для светового потока, пульсация освещения которого превышает частоту 300 Гц, какого-либо заметного воздействия на организм человека выявлено не было, ввиду того, что на такие быстрые изменения интенсивности светового потока перестает уже реагировать сетчатка глаза человека.
Способы снижения пульсации освещения
Тут может быть несколько путей решения. Все зависит от особенностей помещения и типа используемых приборов, чаще всего используют такие методы:
- Подключение светильников к двух- или трехфазной линии попеременно. За счет сдвига напряжение подается неравномерно и мерцание снижается.
- При питании от трехфазной линии количество светильников должно быть кратно трем, двухфазной – двум.
- Замена устаревшего оборудования на современное светодиодное.
- Использования люминесцентных ламп с современным блоком питания на 5 кГц или выше.
В видео обсуждается влияния световых пульсаций на безопасность участников дорожного движения.
Контролировать пульсацию освещения надо обязательно. Она влияет на комфорт пребывания человека, его утомляемость, а в производственных помещениях от этого показателя зависит безопасность.
Какая частота хуже всего
Большинство дешевых китайских светодиодных лампочек, как раз таки и работают на частотах до 300Гц. Таким образом, незаметно день за днем ухудшая ваше самочувствие, и оказывая свое губительное влияние.
Человеческий глаз без посторонних девайсов, способен различать пульсации с частотой от 60 до 80Гц. Далее идет невидимое для нас, но не для нашего мозга мерцание.
Чем «хороши» видимые пульсирующие лампы? Тем что мы их замечаем, и интуитивно стараемся меньше времени проводить под их воздействием. Либо в конце концов меняем их на другие.
А вот самыми опасными будут те мерцания, которые визуально не заметны.
Из-за большой интенсивности на этих частотах, наш мозг уже не успевает обрабатывать всю информацию, однако зрительные рецепторы продолжают ее воспринимать. Причем не как визуальную составляющую.
В итоге все это воздействует на совершенно другие отделы мозга и провоцирует изменение гормонального фона, биоритмов, повышает утомляемость и ухудшает самочувствие.
У качественных производителей источников освещения, даже если и есть пульсации, то происходят они на частотах свыше 300Гц. И никакого смысла заморачиваться с поиском точных измерительных приборов и рассчитывать проценты здесь нет.
Данные лампочки все равно будут абсолютно безопасны и никак не испортят ваше настроение и здоровье.
Поэтому если некий «специалист» пугает вас завышенными цифрами, ехидно делая замечания — мол видите, даже Phillips не безгрешен, зачем тогда платить больше?
Задайте ему резонный вопрос: «А на какой частоте получены данные замеры»? Будьте грамотны в вопросах светодиодного освещения и не дайте себя обмануть.
Как убрать пульсацию в светодиодной лампе?
Во многие светодиодные лампы китайского происхождения устанавливают примитивный блок питания (БП), который назвать драйвером невозможно. Он состоит из RC-цепочки, диодного моста и фильтрующего конденсатора малой ёмкостью, не более 10 мкФ. Именно из-за отсутствия качественного сглаживающего фильтра постоянное напряжение на выходе пульсирует с частотой менее 300 Гц. Ниже представлена схема подобной лампы. Улучшить качество выходного сигнала можно путём замены электролитического конденсатора на аналог большей ёмкости. В результате амплитуда переменной составляющей сигнала снизится в несколько раз. Однако это не всегда возможно, ввиду большого размера конденсатора необходимой емкости.
Основные требования к драйверу – обеспечение светодиодов лампы стабильным током и миниатюрные размеры, необходимые для размещения схемы внутри цоколя. Поэтому самым надёжным способом значительно снизить коэффициент пульсации, является замена некачественного блок питания на драйвер со встроенным ШИМ-регулятором.
Если по субъективным причинам не удаётся избавиться от вредного мерцания светодиодной лампы, то рекомендуется установить её в помещении с наименьшим количеством включений. Наметив очередную покупку светодиодной лампы, делайте выбор в пользу сертифицированной продукции известных брендов.
Читайте так же
Прочитайте эту сатью для общего развития, там все доступно и интересно. Меня заинтересовал один конкреттный параметр: коэффициент пульсации. Цитата:»Коэффициент пульсаций является очень важным показателем. Несмотря на то, что изменения яркости с частотой более 16 – 20 Гц наш мозг сознательно не обрабатывает, эффект от них вполне заметен. Существенные пульсации общей освещенности могут привести к повышенной утомляемости, мигреням, депрессиям и прочим малоприятным вещам по части психики. Нормируется этот показатель в СНиП 23-05-95. Там очень много разных таблиц, но, в целом, из них можно вынести, что коэффициент пульсаций общего освещения не должен превышать 20%.»
Решил проверить, как обстоят дела с пульсацией ламп, которые у меня в квартире. Т.к., спец. оборудования у меня нет, проверял простейшим доступным способом: снимал каждую лампу на видео с близкого расстояния. Способ неточный, очень примерный, но тем не менее, может дать представление об уровне пульсации. Все фотографии сделаны телефоном, некоторые — скрины с видеороликов, сделанные им же. Поэтому цифр в посте не будет и на научность он не претендует. В будущем планирую скрестить компьютер с фотодиодом и превратить его в виртуальный осциллограф, показывающий реальный уровень пульсации. Как будут результаты, создам новый пост.
Расположил лампы в порядке ухудшения параметра.
1. Светодиодная лампа Gauss Elementary 6W Е14:
2. Пульсации не видны, световой поток ровный, не мерцающий:
3. Volpe 15W E27. Пульсация быстрая:
4. Эра 20W E27. Пульсация быстрая, но чуть медленнее и заметнее, чем у Volpe:
5. OSRAM Duluxstar. Пульсация достаточно медленная и неплохо заметная:
6. Jazzway 20W E27. Пульсация достаточно медленная и отчетливо видимая:
7. Галогенная лампа 35W 220V стандарта GU5,3. Пульсация отчетливо видна, но это и понятно — частота в сети 50 Гц:
8. Купленная на пробу светодиодная лампа Qeep 3,5W E14.
9. Медленная и отчетливая пульсация:
10. Светодиодная лампа Camelion 5,5W Е14:
11. Пульсации настолько ужасны, что я бы ее даже врагу не подарил:
12. И наконец, замыкает шит-парад изделие отечественного производителя IEK ЛПО — люминесцентная лампа, которая используется для освещения столешницы. Ее пульсации видны невооруженным взглядом. Но используется она редко:)
На объективность не претендую:) Если в чем-то не прав — поправляйте.
Огромным множеством преимуществ обладают полупроводниковые источники освещения, которые пользуются большим спросом среди населения. Одно из достоинств — это низкий коэффициент пульсации, например, у светодиодных лампочек. Интересно, что формирование зрения бывает только при воздействии солнечных лучей и отсутствии сторонних факторов. Так как цивилизация развивается, человечеству понадобилось больше дополнительных источников освещения. По этой причине изобрели первые лампочки накаливания. Далее из-за прогресса стали выпускаться более современные источники света
Однако совсем недавно ученые, исследуя, обратили внимание на такое явление, как пульсация, которая плохо сказывается на организме человека. Из-за таких сведений в местах, где регулярно бывают люди, а также в детских учреждениях, запретили использовать некоторые виды лампочек
В этой статье мы расскажем, что собой представляет пульсация светодиодных ламп, почему она возникает и как исправить мерцание самостоятельно.
Коэффициенты пульсаций различных источников света
Различные осветительные приборы отличаются по степени пульсации. Наиболее хороши в этом плане устаревшие лампочки накаливания. Их вольфрамовая спираль практически не успевает измениться в яркости в моменты прохождения сетевого напряжения через ноль. Вдобавок старая лампочка пульсирует с удвоенной сетевой частотой, т.е. на 100 Гц. Этот параметр превышает чувствительность большинства людей.
Люминесцентные и led светильники, особенно устаревшие, менее хороши. Здесь всё зависит от качества их электроники. Иногда в продаже попадаются образцы, чьё моргание заметно невооружённым глазом. Модели дороже лишены такого дефекта.
Внимание! Применение диммеров существенно увеличивает пульсации. Особенно это ощущается на низкой яркости лампочки. Также диммеры (особенно симисторные) вносят нежелательные помехи в сеть
Также диммеры (особенно симисторные) вносят нежелательные помехи в сеть.
Коэффициент пульсации и нормы освещенности: основные документы
Главный документ, в котором прописаны все требования в отношении коэффициентов пульсаций и норм освещенности — Свод правил СП (выпущен под номером 52.13330.2011).
Он был выпущен в 2011 году и представляет собой СНИП 23-05-95, где прописаны ключевые требования законов страны в отношении международных нормативов, энергетической эффективности и техники безопасности.
В Своде правиле есть наиболее важные требования к коэффициенту пульсации и освещенности в различных типах помещений — жилых, промышленного типа и общественных.
Контроль освещенности и уровень пульсаций искусственного освещения необходим не только для формального прохождения аттестации рабочего места или же плановой проверки со стороны санэпидстанции.
Это важно для здоровья человека, ведь отклонение от действующих показателей может привести к нарушениям самочувствия всех сотрудников, которые находятся в помещении. Как следствие, снизится работоспособность, уменьшится рентабельность компании и упадет прибыль. Как следствие, снизится работоспособность, уменьшится рентабельность компании и упадет прибыль
Как следствие, снизится работоспособность, уменьшится рентабельность компании и упадет прибыль.
Не меньшее действие оказывает и свет в жилых помещениях. Та же пульсация не видна глазу, но может постепенно воздействовать на здоровье людей.
Вот почему так важен ответственный подход к выбору компьютерной техники и осветительных устройств.
Соблюдение норм — шанс избежать негативных последствий, защитить своих сотрудников и себя лично. Также использование трековых светильников позволит регулировать уровень освещенности в отдельных зонах помещений.
Также читайте как сделать освещение на даче своими руками.
Люмены и люксы
В люменах измеряется величина потока света, это характеристика его источника. То количество лучей, которое добралось до какой-либо поверхности (отражающей или поглощающей), уже будет зависеть от расстояния между источником и этой поверхностью.
Уровень освещенности измеряется в люксах (лк) специальным прибором – люксметром. Самый простой люксметр состоит из селенового фотоэлемента, преобразующего свет в энергию электрического тока, и стрелочного микроамперметра, измеряющего этот ток.
Спектральная чувствительность селенового фотоэлемента отличается от чувствительности человеческого глаза, поэтому в разных условиях приходится использовать поправочные коэффициенты. Самые простые люксметры предназначены для измерения какого-то одного типа освещенности, например, дневного света. Без использования коэффициентов погрешность может составлять более 10%.
Люксметры высокого класса оснащаются светофильтрами, специальными насадками сферической или цилиндрической формы (для измерения пространственной освещенности), приспособлениями для измерения яркости и контрольной проверки чувствительности прибора. Их уровень погрешности – около 1%.
Минимальная освещенность поверхности компьютерного стола по СанПиН – 400 люкс. Школьные парты должны иметь освещенность не менее 500 люкс.
Допустимые нормы пульсации
Во второй половине 20-го века были определены нормы коэффициента пульсации в 10,15 и 20% в зависимости от того, какая работа выполняется в помещении. Значение 10% выбиралось, базируясь на возможности обеспечить этот уровень. 20% выбиралось с учетом стробоскопического эффекта при превышении этого значения. Для помещений с дисплеями показатель снижается до 5%. Ограничений не существует, если люди в каком-то помещении пребывают периодически.
Нормы коэффициента пульсации в России определены законодательно:
- в СНиП 23-05-95 – значение для рабочей поверхности 10-20%, если пульсации с частотой до 300 Гц;
- в ГОСТ 17677-82 – значения для люминесцентных ламп с пускорегулирующими аппаратами с частотой от 400 Гц;
- в СанПиН 2.2.2/2.4.1340-03 – требования к пульсации потока света в помещениях с ЭВМ.
Для измерения пульсации этот ГОСТ рекомендует использовать только отдельные модели люксметров-пульсметров. Указанные приборы должны быть оснащены хорошо сформированной частотной хаpaктеристикой и измерять значения пульсирующего света с частотой до 300 Гц. Обязательно наличие цифровой обработки показателей света.