Основные плюсы и минусы гибких солнечных батарей

Селективные стекла для дома

Кроме применения в качестве покрытия солнечных панелей, селективное покрытие стеклопакета пользуется не меньшим спросом. Селективные стекла, или же мультифункциональные, как их еще называют, применяются для обычных домовых, для остекления коммерческих зданий, спортивных комплексов, муниципальных учреждений и т. д. Такие стекла способны обеспечить хорошую защиту от солнечных лучей и создать благоприятный микроклимат внутри помещения.

Селективное поглощающее покрытие, нанесенное на обычные стекла, создает хорошую защитную пленку. Основная задача таких элементов – это создание максимально благоприятных условий внутри помещения как в летнее время года, так и в зимнее. Суть их работы достаточно простая: летом стекла отсеивают некоторое количество солнечных лучей, чем не дает помещению сильно нагреваться, зимой же они будут служить отличным препятствием для тепловой энергии, не давая ей покидать комнату.

В чем особенность гибких панелей?

Рассматривая стену, оформленную гибкими панелями, будет сложно отличить декоративное покрытие, состоящее из жестких элементов. Между тем такие изделия обладают рядом отличительных особенностей, к которым можно отнести:

  • повышенную гибкость;
  • износоустойчивость;
  • звукоизоляционные свойства;
  • простота очистки;
  • водостойкость;
  • большой ассортимент, включая панели, имитирующие природные материалы;
  • долговечность;
  • простоту монтажа.

Учитывая подобную особенности, при выборе подходящего отделочного материала большинство делает выбор в пользу подобного варианта. Однако в этом случае надо обязательно учитывать, сто гибкие панели имеют небольшую толщину, что предъявляет повышенные требования к качеству подготовки основания. Кроме того, стоимость одного элемента нельзя назвать низкой и материал является искусственным. Это не позволяет создать оптимальный микроклимат.

Характеристики кремниевых солнечных батарей

Кварцевый порошок — это сырьевой материал для кремния. Данного материала на Урале и Сибири очень много, поэтому именно кремниевые солнечные панели есть и будут в большем обиходе, чем остальные подтипы.

Монокристалл

Монокристаллические пластины (mono–Si) содержат в себе синевато–темный цвет, равномерно размещенный на всей пластине. Для таких пластин применяется максимально очищенный кремний. Чем он чище, тем солнечные батареи имеют КПД выше и самую наибольшую стоимость на рынке таких устройств.

Преимущества монокристалла:

  1. Наивысший КПД — 17–25%.
  2. Компактность — задействование сравнительно с поликристаллом меньшей площади для развертывания оснащения в условиях тождества мощности.
  3. Износостойкость — бесперебойная работа выработки электроэнергии без замены основных комплектующих обеспечивается за четверть века.

Недостатки:

  1. Чувствительность к пыли и грязи — осевшая пыль не дает батареям работать со светом от светила и соответственно уменьшает КПД.
  2. Высокая цена равна увеличенному сроку окупаемости.

Так как mono–Si нуждаются в ясной погоде и лучах Солнца, панели устанавливаются на открытых местах и поднятые на высоту. Насчет местности, то предпочтение отдается местности, в которой ясная погода обыденность, а количество солнечных дней приближено к максимальному.

Поликристалл

Поликристаллические пластины (multi–Si) наделены неравномерным синим окрасом из–за разнонаправленности кристаллов. Кремний не настолько чист, как в используемых mono–Si, поэтому КПД несколько ниже, вместе со стоимостью таких солнечных батарей.

Положительные факты поликристалла:

  1. Коэффициент полезного действия 12–18%.
  2. При неблагоприятной погоде КПД лучше, чем у Mono–Si.
  3. Цена данного агрегата меньше, а сроки окупаемости намного ниже.
  4. Ориентация на солнце не принципиальна, поэтому можно размещать их на крышах различных строений.
  5. Длительность эксплуатации — эффективность поглощения энергии и аккумулирования электричества падает до 20% спустя 20 лет непрерывной эксплуатации.

Недостатки:

  1. КПД уменьшен до 12–18%.
  2. Требовательность к месту. Для развертывания нормальной станции выработки электроэнергии нужно больше места, чем при задействовании батареи из монокристалла.

Аморфный кремний

Технология производства панелей существенно отличается от предыдущих двух. В приготовлении задействованы горячие пары, опускающиеся на подложку без образования кристаллов. При этом используется меньше производственного материала и это учитывается при формировании цены.

Преимущества:

  1. Коэффициент полезного действия — 8–9% во втором поколении и до 12% в третьем.
  2. Высокий коэффициент полезного действия при не совсем солнечной погоде.
  3. Возможность использования на гибких модулях.
  4. Эффективность батарей не падает вниз при повышении температуры, что позволяет монтировать их на всякие поверхности с нестандартной формой.

Основным недостатком можно считать меньший КПД (если сравнивать с иными аналогами), в связи с чем требуется большая площадь для получения сопоставимой отдачи от оборудования.

Устройство панелей

Растущая в цене электроэнергия поневоле заставляет задуматься об экономии. И отличной альтернативой в данном случае считаются природные источники энергии. Оптимальным решение для частного дома является альтернативная электростанция – солнечная батарея.

Изначально может показаться, что вся система солнечной батареи слишком большая, а принцип ее работы невероятно сложен. И чтобы понять, как функционирует солнечная батарея в деле, необходимо детально рассмотреть ее конструкцию.

В действительности гелиосистема устроена довольно просто и состоит из четырех основных элементов.

  • Солнечная батарея – по форме и размерам представляет собой прямоугольную панель с определенным количеством пластинок. В основу солнечной батареи входят полупроводниковые материалы. Миниатюрные преобразователи собираются в модули, а модули – в единую систему гелиоколлектора.
  • Контроллер – выполняет функцию посредника между солнечным модулем и аккумулятором. Он необходим для отслеживания уровня заряда аккумулятора. Его роль крайне важна во всей цепи – контроллер не дает закипать или падать электрическому потенциалу, который необходим для стабильного функционирования всей системы.
  • Инвертор – преобразует постоянный ток солнечного модуля в переменный 220-230 вольт. Гибридный сетевой инвертор может использовать для своей работы как постоянный, так и переменный ток. Но стоит учитывать, что для работы инвертора тоже необходима энергия, и его расход составляет порядка 30% потерь на преобразование. И в пасмурную погоду или в темное время суток вся энергия для работы будет расходоваться из аккумулятора. То есть если аккумулятор разрядится, то инвертор перестанет работать.
  • Аккумулятор – преобразованная в электричество солнечная энергия не всегда используется в доме в полном объеме. Излишки могут накапливаться в аккумуляторе и использоваться в темное время суток и в пасмурную погоду.

Но перед тем как приступить к выбору и установке солнечной батареи на крыше, необходимо разобраться в принципах работы устройства, а также рассчитать рабочие узлы гелиосистемы.

Технические характеристики

Основным элементом каждой солнечной батареи является фотоэлектрический преобразователь.

В массовом производстве используется три типа элементов из кремния.

  • Монокристаллические – искусственно выращенные кремниевые кристаллы нарезаются на тонкие пластины. В основу модуля входит очищенный чистый кремний. Поверхность больше похожа на пчелиные соты или небольшие ячейки, которые соединяются между собой в единую структуру. Готовые маленькие пластинки соединяются между собой сеткой из электроводов. В данном случае процесс производства более трудоемкий и энергозатратный, что отражается на конечной стоимости солнечной батареи. Но монокристаллические элементы обладают большей производительностью, а средний КПД составляет около 24%. Срок службы монокристаллических батарей больше, они прослужат в среднем около 30 лет.
  • Поликристаллические – в основе кремниевый расплав. Такие модули считаются оптимальным решением для жилого частного дачного дома. Несколько кристаллов из кремния объединяются в один фотоэлемент. Поверхность поликристаллической солнечной батареи имеет неоднородную поверхность, из-за чего хуже поглощает свет. И КПД, соответственно, ниже, находится в пределах 20%. Срок службы поликристаллической панели составляет 20-25 лет. Они имеют характерное отличие – темно-синий цвет покрытия. Такие модули дешевле аналогов, что позволяет окупить всю систему примерно за 3 года.
  • Тонкопленочные – имеют гибкую подложку, что позволяет монтировать батарею на любую поверхность с углами и изгибами. Тонкий слой полупроводников наносится методом напыления на поверхность батареи. Такие системы имеют очевидный недостаток – маленький КПД. Производительность в среднем составляет около 10%. То есть для обеспечения энергией дома потребуется в два раза больше тонкопленочных батарей, чем поликристаллических. И срок службы таких панелей меньше других аналогов – в среднем ресурс работы составляет около 20 лет.

Принцип работы солнечной батареи

В результате перетечки зарядов на границе p- и n- слоев, в n-слое образуется зона нескомпенсированного положительного заряда, а в p-слое – отрицательного заряда, т.е. известный всем из школьного курса физики p-n-переход. Разность потенциалов, возникающая на переходе контактная разность потенциалов (потенциальный барьер) препятствует прохождению электронов с p-слоя, но беспрепятственно пропускает неосновные носители в направлении противоположном, что позволяет получить фото-ЭДС при попадании на ФЭП солнечного света.

При облучении солнечным светом, поглощенные фотоны начинают генерировать неравновесные электронно-дырочные пары. Генерируемые же вблизи перехода электроны, из p-слоя переходят в n-область.

Аналогичным образом попадают в p-слой избыточные дырки и слоя n (рисунок а). Получается, что в p-слое накапливается положительный заряд, а в n- слое – отрицательный, вызывая напряжение во внешней цепи (рисунок б). У источника тока есть два полюса: положительный — p-слой и отрицательный — n-слой.

Это основной принцип работы солнечный элементов. Электроны, таким образом, будто бегают по кругу, т.е. выходят из p-слоя и возвращаются в n-слой, проходя нагрузку (аккумулятор).

Фотоэлектрический отток в однопереходном элементе обеспечивают лишь те электроны, которые обладают энергией выше, чем ширина некой запрещенной зоны. Те же, которые обладают меньшей энергией, в этом процессе не участвуют. Это ограничение снять позволяют структуры многослойные, состоящие из более чем один СЭ, у которых ширина запрещенной зоны различная. Их называют каскадными, многопереходными или тандемными. Фотоэлектрическое преобразование у них выше за счет того, что работают такие СЭ с более широким солнечным спектром. В них фотоэлементы располагаются по мере уменьшения ширины запрещенной зоны. Солнечные лучи вначале попадают на фотоэлемент с самой широкой зоной, при этом происходит поглощение фотонов с наибольшей энергией.

Затем, фотоны, пропущенные верхним слоем, попадают на следующий элемент и т.д. В области каскадных элементов основным направлением исследования является использование в качестве одного компонента или нескольких арсенида галлия. У таких элементов эффективность преобразования составляет 35%. Элементы соединяют в батарею, поскольку изготовить отдельный элемент большого размера (следовательно, и мощности) не позволяют технические возможности.

Солнечные элементы способны работать длительное время. Они себя зарекомендовали как стабильный и надежный источник энергии, пройдя испытания в космосе, где главной опасностью для них является метеорная пыль и радиация, которые приводят к эрозии кремниевых элементов. Но, поскольку, на Земле эти факторы не оказывают на них столь негативного действия, можно предположить, что срок службы элементов будет еще более продолжительным.

Солнечные батареи уже находятся на службе человека, являясь источником питания для различных устройств, начиная от мобильных телефонов и заканчивая электромобилями.

И это уже вторая попытка человека обуздать безграничную солнечную энергию, заставив работать ее себе во благо. Первой попыткой было создание солнечных коллекторов, электричество в которых вырабатывалось за счет нагрева сконцентрированными лучами солнца воды до температуры кипения.

Термальная солнечная электростанция в Испании (город Севилья)

Преимущество солнечных батарей в том, что они непосредственно производят электричество, теряя энергии намного меньше, чем солнечные многоступенчатые коллекторы, в которых процесс ее получения связан с концентраций лучей Солнца, нагревом воды, выделением пара, вращающего паровую турбину и только после этого выработке генератором электричества. Основные параметры солнечных батарей – в первую очередь, мощность

Затем важно, каким запасом энергии они обладают

Зависит этот параметр от емкости аккумуляторов и их числа. Третьим параметром является пиковая мощность потребления, означающая количество одновременно возможных подключений приборов. Еще одним важным параметров является номинальное напряжение, от которого зависит выбор дополнительного оборудования: инвертора, солнечной панели, контроллера, аккумулятора.

Конструкция тонкопленочных панелей

Характерной особенностью таких конструкций является их высокая производительность даже при воздействии рассеянного света. В течение года суммарная мощность этих устройств на 15% превышает кремниевые аналоги. В этом заключаются их явные преимущества.

На определенном этапе, в зависимости от площади, тонкопленочные солнечные батареи начинают преобладать над другими типами модулей. При пасмурной погоде они будут работать значительно эффективнее, так же как и при высокой температуре в жаркую погоду, как и планировал изобретатель. Благодаря физическим свойствам эти изделия часто применяются в декоративной отделке фасадов зданий и в других дизайнерских решениях. Специалисты прогнозируют, что это солнечные батареи будущего.

Важным конструктивным решением является нанесение тонкой пленки на цилиндрические поверхности. В качестве такого цилиндра используется стеклянная трубка, которая после нанесения фотоэлемента помещается внутрь другой трубки. Вторая трубка имеет больший диаметр и к ней подведены электрические контакты.

Благодаря цилиндрическому исполнению, пленочные солнечные батареи поглощают большее количество света, а 40 деталей свободно размещаются на площади 2 м2. Они устойчивы к сильным порывам ветра и могут свободно устанавливаться на крышах.

В настоящее время плёночные конструкции оснащаются различными типами каскадных элементов, обладающих многослойной структурой. Вместо одного, в них имеется несколько р-п переходов, что в значительной степени увеличивает эффективность таких модулей. В результате, электрическая энергия, генерируемая панелями, снижает свою себестоимость в два раза относительно кремниевых элементов. На всей площади плёнки с тремя переходами КПД составляет 31%, а при пяти переходах это значение может достичь 43%.

Благодаря постоянному развитию технологий, тонкопленочные солнечные батареи в ближайшее время станут доступными для большинства населения. Они будут не только дешевыми, но и эффективными.

Производство солнечных батарей

Солнечные батареи для дома

КПД солнечных батарей

Монокристаллические и поликристаллические солнечные батареи

Принцип работы солнечной батареи

Солнечные батареи: альтернативная энергия

Обзор

Сегодня батареи солнечные тонкопленочные помимо классической установки на крышах, можно использовать вместо остекления. Модули такие отличаются разнообразным цветовым решением, что позволяет зданиям придавать неповторимый внешний вид.

Стекло закаленное, покрывающее фотоэлементы, имеет большую механическую прочность, чем обычное, и более безопасно. Поэтому верхние этажи домов во многих странах, а также лоджии и балконы остекляются именно им.

Помимо этого, оно обеспечивает достаточно хорошую прозрачность, гарантирующую высокую эффективность даже при рассеянном свете, т.е. они не только выглядят эстетично, но и экономят бюджет.

За непрозрачную батарею заплатить придется порядка 9 тысяч рублей, за цветную прозрачную частично (20%) -16 тысяч.

Тем не менее, специалисты считают, что будущее гелиоэнергетики именно за ними.

Они ссылаются на такие достоинства тонкопленочных батарей:

  • низкая себестоимость;
  • небольшая разница в КПД;
  • постоянное повышение стоимости кристаллических аналогов.

К тому же технология тонких пленок считается наиболее надежной. Уже сегодня разработано несколько видов батарей тонкопленочных, называемых также «гибкими», для создания которых применяют:

  • кремний аморфный;
  • кадмия теллурид/сульфид;
  • диселениды медно-индиевые и медно-гелиевые.

Устройство гибких солнечных панелей

Преобразование энергии солнца в электрическую люди изучили достаточно давно, но коммерческие образцы солнечных панелей появились на рынке только в последние годы. Ещё несколько десятилетий назад они использовались только в космонавтике или военной сфере. Сейчас выпущено множество устройств, которые функционируют от солнечной энергии. В качестве примера можно привести калькуляторы, аккумулятор для телефона с солнечной панелью, солнечная батарея для зарядки автомобильной АКБ, всевозможные водонагреватели и системы обогрева частных домов.

Самые первые солнечные батареи были тяжёлыми и крупногабаритными. Кроме того, у них был небольшой КПД. Но постепенно конструкция совершенствовалась, размеры уменьшались, а эффективность росла. Сейчас им уже не требуется максимальный солнечный свет для выработки электричества. Затем появились гибкие солнечные батареи, что стало существенным прорывом в области альтернативных источников энергии.

Гибкая панель – это полупроводниковый слой, который напылён на тонкую подложку. Современные образцы имеют толщину около 1 микрометра. При этом по производительности они примерно соответствуют обычным кристаллическим моделям. Первоначально такие батареи производились на базе аморфного кремния. Затем стали использовать:

  • диселениды медь-индий, медь-галлий;
  • теллуриды и сульфиды кадмия;
  • полимерные соединения.

Чтобы увеличить эффективность гибких панелей производители используют многослойную конструкцию. В таких полупроводниковых модулях происходит отражение света и его преобразование происходит несколько раз. Современные технологии позволяют выпускать достаточно износостойкие и прочные панели, которые имеют малую толщину и все. Такие солнечные батареи можно складывать, сгибать, сворачивать. Естественно, что это нужно делать «без фанатизма». На грубую силу они не рассчитаны, но поход или туристическую поездку переносят без проблем.

Какие характерные особенности имеют гибкие солнечные модули? Можно назвать следующие:

  • Есть возможность использования на криволинейной поверхности;
  • Вырабатывают электричество даже в облачную погоду. То есть, имеют высокую общую выработку энергии;
  • Эффективны в южных широтах;
  • Высокий уровень оптического поглощения лучей солнца. То есть, более полное усвоение и переработка солнечной энергии;
  • Хорошо работают в составе мощных гелиоустановок. По этой причине первоначально гибкие панели использовали на крупных гелиостанциях.

Стоит отметить и ещё один важный плюс гибких модулей. Они дешевле, чем кристаллические панели. Это положительно сказывается на конечной цене изделий из них. Не обходится и без недостатков. Гибкие батареи при одинаковой площади с кристаллическими моделями имеют в два большую площадь поверхности. А значит, занимают больше места при размещении.

Гибридная солнечная панель

Стоит отдельно сказать про такую разновидность солнечных панелей, как гибридные. Это название они получили за то, что умеют вырабатывать сразу два типа энергии, тепло и электричество.

Гибридные солнечные панели, ещё называемые PVT, являются соединением фотоэлектрической батареи и коллектора тепла. Этот симбиоз даёт возможность в 2 раза уменьшить площадь развёртывания системы из теплового коллектора и фотоэлектрических батарей на каком-нибудь здании.

Существенный плюс заключается в том, что гибридная панель имеет возможность отбирать избыточное тепло от фотоэлементов. Это обеспечивает теплоноситель в коллекторе. Именно нагрев фотоэлемента уменьшает эффективность преобразования солнечной энергии в электрическую. В случае гибридной батареи эта проблема частично решается.

На практике гибридные панели пока не получили широкого распространения. В настоящий момент они успешно используются в роли тепловых насосов, нагрева воды в бассейне, аккумулирования тепла скважины и т. п.

https://youtube.com/watch?v=t5Os8yisXI0

Это интересно: Как правильно паять светодиодную ленту — разбираемся детально

Особенности гибких солнечных модулей и их применение

Гибкие солнечные панели (они же – «тонкопленочные») становятся все более востребованными в бытовой сфере. Если раньше их использовали главным образом на крупных гелиостанциях или в аэрокосмической отрасли, то сегодня они все чаще применяются и в повседневной жизни.

  • Гибкие панели встраивают в различные архитектурные элементы и рекламные сооружения, а также используют в качестве складных мобильных источников энергии.
  • Более того, тонкопленочные фотобатареи даже нашивают на одежду и снаряжение. К примеру, для туристов выпускают специальные модели походных рюкзаков, снабженных гибкими батареями.
  • А последние разработки в этой сфере позволили создать тонкопленочные модели, которые можно использовать и для тонировки стекол.
  • То есть при помощи «солнечной пленки» любое окно легко превратить в полноценный источник питания.
  • Проводились и другие интересные эксперименты. Например, по созданию так называемых «фотоштор».

Нашитые на ткань гибкие солнечные модули не только вырабатывают энергию, но и надежно защищают комнату от избытка солнечных лучей. Тем самым обеспечивается прохлада и комфортный микроклимат в помещении.

Что такое «гибкая солнечная панель»

По сути, такая панель представляет собой слой полупроводника, напыленный на тонкую гибкую подложку. Толщина современных готовых панелей минимальна (не более 1 мкм), а их производительность лишь немного уступает КПД привычных кристаллических образцов.

Ранее тонкопленочные батареи изготавливали лишь на основе аморфного кремния, но сейчас все больше используют кадмия теллуриды/сульфиды, диселениды медно-индиевые и медно-галлиевые, а также некоторые полимерные вещества. Для повышения энергоэффективности применяются и многослойные (многокаскадные) полупроводниковые структуры, в которых свет отражается и преобразуется несколько раз.

Что же касается отличительных свойств гибких гелиомодулей, то можно выделить следующие:

  • Гибкость структуры и возможность использования на криволинейных и цилиндрических поверхностях;
  • Сохранение производительности при облачной погоде, как следствие – высокая общая энерговыработка;
  • Особая эффективность в жарком климате;
  • Довольно высокая степень оптического поглощения солнечного спектра, благодаря чему энергия солнца «улавливается» более полно;
  • Эффективная работа в мощных гелиокомплексах. Именно поэтому изначально такие панели применяли в основном на крупных солнечных станциях.

Кроме того, производство гибких солнечных панелей обходится дешевле их кристаллических аналогов. Это означает, что и итоговая цена таких изделий также несколько ниже.

У тонкопленочных батарей есть только одна негативная особенность – более обширная (примерно в 2 раза) площадь поверхности по сравнению с кристаллическими вариантами той же мощности.

Особенности использования

Гибкие фотомодули применяют и в быту, и в промышленной сфере. Причем их особые рабочие свойства накладывают свои ограничения и на специфику использования.

В быту

Чаще всего солнечные батареи на гибких фотоэлементах используют при архитектурной отделке зданий и в малых архитектурных формах. Такие панели встраивают в крыши и окна, заключают в стеклянные триплексы и полимерные короба.

Кроме того, так как гибкие фотобатареи очень легкие, то именно их используют в тех случаях, когда критичную роль играет вес. Электросамолеты, электролодки и электромобили, аэростатные конструкции и т.д., — во всех этих случаях тонкие гелиопанели гораздо предпочтительнее и эффективнее кристаллических вариантов.

Также гибкие батареи применяют на солнечных станциях, то есть в случаях, когда не имеет значения их более обширная площадь. Особенно хорошо эти батареи зарекомендовали себя в регионах с пасмурной погодой или жарким климатом.

В космосе

Ведутся и активные разработки по использованию тонкопленочных панелей в космической отрасли. Так, на российском предприятии НПП «Квант» разрабатывается направление по созданию гибких фотопанелей для космических станций

Основное внимание при этом уделяется трехкаскадным батареям на базе аморфного кремния

Такие батареи отличаются гораздо более высокими (в 4-5 раз) энергомассовыми характеристиками по сравнению с кристаллическими аналогами (несмотря на несколько меньший КПД).

Кроме того, они гораздо более стойки к радиационному излучению, а их стоимость существенно ниже. Еще один весьма важный фактор – небольшой транспортный (стартовый) объем гибких модулей и возможность изготовления на их основе легко развертываемых конструкций.

Коллекторы: получение тепла из солнечной энергии

Солнечные коллекторы

Солнечные батареи могут применяться для обогрева объектов, нагрева жидкости. Возможность получения тепла обусловлена способностью батареи накапливать энергию. Это позволяет повышать температуру теплоносителя в трубах, за счет чего обеспечивается не только нагрев жидкости, но и обогрев всего объекта. Солнечные коллекторы функционируют по определенной схеме. Их основные элементы конструкции:

  • насосная станция;
  • бак-аккумулятор;
  • контроллер;
  • трубы и фитинги.

Виды коллекторов:

  • плоские: состоят из плоского абсорбера, покрытия, теплоизолирующего слоя;
  • вакуумные (трубчатые): состоят из стеклянной колбы, теплоизоляционный материал заменен на вакуум, который заполняет емкость (в ней также находится абсорбер).

У второго варианта есть существенное преимущество – низкие теплопотери. По этой причине вакуумные коллекторы применяются повсеместно там, где не могут быть установлены плоские аналоги.

Отопление солнечной энергией домов

Принцип работы солнечной батареи для отопления дома кардинально отличает их от всех описанных выше приспособлений. Это совершенно другое устройство. Описание следует ниже.

Главной деталью отопительной системы, работающей на энергии солнца, является коллектор, принимающий его свет и преобразовывающий его в кинетическую энергию. Площадь этого элемента может варьироваться от 30 до 70 квадратных метров.

Для крепления коллектора используется специальная техника. Между собой пластины соединены металлическими контактами.

Следующим компонентом системы является накопительный бойлер. В нем происходит трансформация кинетической энергии в тепловую. Он участвует в нагревании воды, литраж которой может достигать 300 литров. Иногда такие системы поддерживаются дополнительными котлами на сухом топливе.

Завершают систему солнечного отопления настенные и напольные элементы, в которых по тонким медным трубам, распределенным по всей их площади, циркулирует нагретая жидкость. Благодаря низкой температуре запуска панелей и равномерности теплоотдачи, помещение прогревается достаточно быстро.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: