Частотомер 10 гц

Самодельный частотомер на attiny2313. самодельный частотомер на attiny2313 технические характеристики частотомера

Простейшее устройство на базе микроконтроллера AVR. Пример

Итак, ознакомившись с тем, что собой представляют микроконтроллеры AVR, и с системой их программирования, рассмотрим простейшее устройство, базисом для которого служит данный контроллер. Приведем такой пример, как драйвер низковольтных электродвигателей. Это приспособление дает возможность в одно и то же время распоряжаться двумя слабыми электрическими двигателями непрерывного тока.

Предельно возможный электроток, коим возможно загрузить программу, равен 2 А на канал, а наибольшая мощность моторов составляет 20 Вт. На плате заметна пара двухклеммных колодок с целью подсоединения электромоторов и трехклеммная колодка для подачи усиленного напряжения.

Устройство выглядит, как печатная плата размером 43 х 43 мм, а на ней сооружена минисхемка радиатора, высота которого 24 миллиметра, а масса – 25 грамм. С целью манипулирования нагрузкой, плата драйвера содержит около шести входов.

Программное обеспечение

ИК-фотодиод подключается к положительному входу внутреннего аналогового компаратора ATtiny13, а переменный резистор для калибровки подключается к отрицательному входу.

Прерывание запускается на каждом заднем фронте выхода компаратора, которое сохраняет текущее значение timer0 и перезапускает таймер. 8-битный таймер расширяется до 16-битного с помощью прерывания переполнения таймера.

Сохраненное значение таймера содержит количество отсчетов за один оборот. Количество оборотов рассчитывается с использованием следующего уравнения:

Паяльная станция 2 в 1 с ЖК-дисплеем
Мощность: 800 Вт, температура: 100…480 градусов, поток возду…

Подробнее

Полученное значение частоты вращения отображается на OLED-дисплее с шиной I²C. Реализация протокола I²C основана на простом методе передачи битов. Метод был специально разработан для ограниченных в ресурсах контроллеров ATtiny13 и ATtiny10.

Функции OLED адаптированы для модуля SSD1306 128×32 OLED, но их можно легко изменить для использования с другими модулями. В целях экономии ресурсов реализованы только основные функции, необходимые для этого устройства.

Компиляция и загрузка

Поскольку на плате нет разъема ICSP, вам необходимо запрограммировать ATtiny13 либо перед пайкой с помощью адаптера SOP, либо после пайки с помощью зажима EEPROM.

При использовании Arduino IDE

  1. Убедитесь, что вы установили MicroCore .
  2. Перейдите в Инструменты -> Плата -> MicroCore и выберите ATtiny13.
  3. Перейдите в Инструменты и установите следующие параметры платы:
  • Clock: 1.2 MHz internal osc.
  • BOD: BOD 2.7V
  • Timing: Micros disabled
  1. Подключите ваш программатор к компьютеру и к ATtiny13.
  2. Перейдите в Инструменты -> Программатор и выберите ISP-программатор (например, USBasp ).
  3. Перейдите в Инструменты -> Записать загрузчик.
  4. Откройте Tacho.ino и нажмите Загрузить .

Простейшее устройство на базе микроконтроллера AVR. Пример

Итак, ознакомившись с тем, что собой представляют микроконтроллеры AVR, и с системой их программирования, рассмотрим простейшее устройство, базисом для которого служит данный контроллер. Приведем такой пример, как драйвер низковольтных электродвигателей. Это приспособление дает возможность в одно и то же время распоряжаться двумя слабыми электрическими двигателями непрерывного тока.

Предельно возможный электроток, коим возможно загрузить программу, равен 2 А на канал, а наибольшая мощность моторов составляет 20 Вт. На плате заметна пара двухклеммных колодок с целью подсоединения электромоторов и трехклеммная колодка для подачи усиленного напряжения.

Устройство выглядит, как печатная плата размером 43 х 43 мм, а на ней сооружена минисхемка радиатора, высота которого 24 миллиметра, а масса – 25 грамм. С целью манипулирования нагрузкой, плата драйвера содержит около шести входов.

Схема и описание работы частотомера на микроконтроллере AVR ATtiny2313

В данной статье представлена простая и надежная схема частотомера, реализованная на основе микроконтроллера ATtiny2313 (семейство AVR). С ее помощью можно измерять частоты до 65 кГц включительно. Программа для микроконтроллера написана на BascomAVR – нечасто уже используется, но может быть кто то его еще юзает, поэтому, надеюсь, кому то еще эта схема пригодится. В дальнейшем уже буду публиковать схемы с использованием более современных программно-аппаратных схем.

Отображение частоты производится на дисплее 16*2, но обязательно с контроллером HD44780 или аналогичным KS066.. Для питания прибора подойдет напряжение от 5 до 9 вольт.

Подсчет числа импульсов производится при помощи подсчитывания импульсов по нарастающему фронту на ноге 9 микроконтроллера (PD.5/T1 и вход таймера Timer1). Два диода 1N4148 и резистор на 10 кОм необходимы для защиты входа от перенапряжения.

Для работы схемы у микроконтроллера необходимо прошить fuse bits, чтобы задействовать режим работы с внешним кварцевым резонатором (данная операция уже много где в сети описана, поэтому здесь не будем отвлекаться на это).

Текст программы написан на бэйсике в среде BascomAVR. Демо версия этой программы имеет ограничение по размеру кода в 4 Кб, но этого нам вполне хватает. Скачать BascomAVR можно с официального сайта ее разработчика — www.mcselec.com. В программе задействованы 2 таймера: таймер0 служит для отсчета фиксированных интервалов времени (в рассматриваемом нами случае 1 секунда, можно изменять), а таймер1 осуществляет подсчет импульсов, пришедших за это время.

Необходимо отметить, что подсчет числа импульсов будет производиться только в том случае, если уровень сигнала на контакте 9 будет равен уровню логической «1» (примерно 3-5 вольт). Timer0 работает на дефолтной частоте (то есть которая установлена в нем по умолчанию) микроконтроллера ATtiny2313, равной 8 МГц, делитель тактовой частоты не используется. Чтобы увеличить верхний предел измерения частоты (65 кГц) необходимо использовать внешний кварц с большей тактовой частотой и немного изменить прошивку.

Частотомер можно сконструировать на макетной плате. В качестве перспектив на доработку устройства можно добавить распознавание диапазонов частоты и отображение ее в виде  Гц, кГц, МГц. Скачать программу для этой схемы можно по нижеприведенной ссылке.

  Frequency (14,0 KiB, 80 hits)

Схема охранного устройства

Алгоритм работы ПОУ № 1 (принципиальная схема рисунок 2) следующий. Внешними (выносными) элементами по отношению к ПОУ являются семь концевых выключателей (S1…S7), которые позволяют контролировать состояние семи дверей с помощью индикаторов HL2…HL8. Один концевой выключатель контролирует состояние одной двери.

Если дверь закрыта — концевой выключатель разомкнут. Соответствующий индикатор — не горит (погашен).

Рис.2. Принципиальная схема охранного устройства.

Рис. 3. Схема электронного ключа для задвижки (на ток до 15А).

Если дверь открыта — концевой выключатель замкнут. Соответствующий индикатор — периодически мигает. В интерфейс контроля и управления ПОУ входят: тумблер SA1, индикаторы HL1… HL9. Конструктивно, все вышеуказанные элементы целесообразно разместить на отдельной панели управления устройства.

Элементы интерфейса управления ПОУ имеют следующее назначение:

  • SA1 — тумблер включения сигнализации. При установке данного тумблера в положение «ВКЛ» — устройство ставится под охрану. Устройство ставится под охрану, через ~ 10 сек. с момента установки тумблера SA1 в положение «ВКЛ» из положения «ВЫКЛ». После установки устройства под охрану, сигнализация срабатывает через ~ 10 сек с момента замыкания любого концевого выключателя S1…S8;
  • HL1 — индикатор активации режима охраны. Если устройство находится в режиме «охрана», данный индикатор — горит, если в режиме » контроль состояния дверей» данный индикатор — погашен;
  • HL9 — функциональный индикатор микроконтроллера DD1. Данный индикатор периодически мигает, сразу после подачи питания на устройство. Мигающий индикатор HL9 указывает на то, что микроконтроллер DD1 «не завис», а функционирует по заданному алгоритму.

ПОУ построена на микроконтроллере DD1, рабочая частота которого задается генератором с внешним резонатором ZQ1 на 10 МГц. К порту РЗ микроконтроллера DD1 подключены тумблер SA1, пьезоэлектрический излучатель ВА1, индикатор HL1, ключи на транзисторах VT1…VT4. К порту Р1 микроконтроллера DD1 подключены концевые выключатели S1…S7 и индикаторы HL2…HL9.

Питание на данные индикаторы поступает через ключ на транзисторе VT5, который управляется с вывода 19 микроконтроллера DD1. Резисторы R13…R20 — токоограничительные для, индикаторов HL2…HL25. Резистор R10 — токоограничительный для индикатора HL1.

Реле К1, К2 управляются соответственно с выводов 2, 3 DD1.

Спустя 10 сек с момента подачи лог. 0 на вывод 3 микроконтроллера DD1- ПОУ ставится под охрану. Для этого необходимо установить тумблер SA1 в положение «ВКЛ» или установить прямой выход D-триггера DD2( вы вод 5 DD2) в лог. 0. Рассмотрим работу устройства в данном режиме.

Если включится любой из концевых выключателей S1…S7 ( будет открыта любая дверь) то на соответствующем выводе порта Р1 микроконтроллера DD1 будет присутствовать сигнал уровня логического 0. Через ~ 10 сек. с момента замыкания концевого выключателя включится звуковая сигнализация (пьезоэлектрический излучатель ВА1).

При этом на выводе 3 микроконтроллер DD1 установит уровень логического 0 (Включится реле К2). Реле К1 будет периодически включаться и выключаться с периодом ~ 1 сек ( на выводе 2 микроконтроллера DD1 выходной сигнал будет иметь форму меандра).

Сигнализация включится и в том случае если любой из концевых выключателей S1…S7 включится на короткое время (например, открыть и тут же закрыть дверь форточку). Сигнализация выключается установкой тумблера SA1 в положение «ВЫКЛ» или установкой прямого выхода D-триггера DD2 в лог. 1. Доступ к тумблеру SA1 целесообразно ограничить.

Пусть тумблер SA1 установлен в в положение «ВЫКЛ. Тогда при открывании дверей будут только периодически мигать соответствующие индикаторы. При этом, при открывании одной двери, в течении 2 сек. будет работать звуковая сигнализация (пьезоэлектрический излучатель ВА1).

К контактам реле К1, К2 можно подключить различные исполнительные механизмы или их цепи управления (механизм блокировки дверей, ревун и т. д.). Разработанная программа на ассемблере занимает всего-то порядка 0,4 КБайт памяти программ микроконтроллера.

Основные аспекты программирования микроконтроллера AVR

Кодирование микроконтоллеров зачастую производят в стиле ассемблера или СИ, однако, можно пользоваться и другими языками Форта или Бейсика. Таким образом, чтобы по факту начать исследование по программированию контроллера, следует быть оснащенным следующим материальным набором, включающим в себя: микроконтроллер, в количестве три штуки — к высоковостребованным и эффективным относят — ATmega8A-PU, ATtiny2313A-PU и ATtiny13A- PU.

Чтобы провести программу в микроконтроллер, нужен программатор: лучшим считают программатор USBASP, который дает напряжение в 5 Вольт, используемое в будущем. С целью зрительной оценки и заключений итогов деятельности проекта нужны ресурсы отражения данных − это светодиоды, светодиодный индуктор и экран.

Чтобы исследовать процедуры коммуникации микроконтроллера с иными приборами, нужно числовое приспособление температуры DS18B20 и, показывающие правильное время, часы DS1307

Также важно иметь транзисторы, резисторы, кварцевые резонаторы, конденсаторы, кнопки

С целью установки систем потребуется образцовая плата для монтажа. Чтобы соорудить конструкцию на микроконтроллере, следует воспользоваться макетной платой для сборки без пайки и комплектом перемычек к ней: образцовая плата МВ102 и соединительные перемычки к макетной плате нескольких видов — эластичные и жесткие, а также П-образной формы. Кодируют микроконтроллеры, применяя программатор USBASP.

Дисплей

В приборе в качестве дисплея используются семь светодиодных 7-сегментных индикаторов с общим анодом. Если яркость свечения индикаторов будет недостаточной, можно изменить номинал резисторов, ограничивающих ток через сегменты. Однако не забывайте, что величина импульсного тока для каждого вывода микроконтроллера не должна превышать 40 мА (индикаторы тоже имеют свой рабочий ток, о его величине не стоит забывать). На схеме автор указал номинал этих резисторов 100 Ом. Незначимые нули при отображении результата измерения гасятся, что делает считывание показаний более комфортным.

Печатная плата

Двухсторонняя печатная плата имеет размеры 109 × 23 мм. В бесплатной версии среды проектирования печатных плат Eagle в библиотеке компонентов отсутствуют семисегментные светодиодные индикаторы, поэтому они были нарисованы автором вручную. Как видно на фотографиях (Рисунки 5, 6, 7) авторского варианта печатной платы, дополнительно необходимо выполнить несколько соединений монтажным проводом. Одно соединение на лицевой стороне платы – питание на вывод Vcc микроконтроллера (через отверстие в плате). Еще два соединения на нижней стороне платы, которые используются для подключения выводов сегмента десятичной точки индикаторов в 4 и 7 разряде через резисторы 330 Ом на «землю». Для внутрисхемного программирования микроконтроллера автор использовал 6-выводный разъем (на схеме это разъем изображен в виде составного JP3 и JP4), расположенный в верхней части печатной платы. Этот разъем не обязательно припаивать к плате, микроконтроллер можно запрограммировать любым доступным способом.

Рисунок 5. Расположение светодиодных индикаторов и транзисторных ключей на плате. Видна перемычка монтажным проводом для подачи питания на микроконтроллер
Рисунок 6. Микроконтроллер Attiny2313, разъем внутрисхемного программирования и перемычки для подключения выводов сегмента десятичной точки индикатора
Рисунок 7. Вид нижней стороны печатной платы

Поделки на базе микроконтроллера AVR

Поделки своими руками на микроконтроллерах AVR становятся популярнее за счет своей простоты и низких энергетических затрат. Что они собой представляют и как, пользуясь своими руками и умом, сделать такие, смотрим ниже.

«Направлятор»

Такое приспособление проектировалось, как небольшой ассистент в качестве помощника тем, кто предпочитает гулять по лесу, а также натуралистам. Несмотря на то, что у большинства телефонных аппаратов есть навигатор, для их работы необходимо интернет-подключение, а в местах, оторванных от города, это проблема, и проблема с подзарядкой в лесу также не решена. В таком случае иметь при себе такое устройство будет вполне целесообразно. Сущность аппарата состоит в том, что он определяет, в какую сторону следует идти, и дистанцию до нужного местоположения.

Построение схемы осуществляется на основе микроконтроллера AVR с тактированием от наружного кварцевого резонатора на 11,0598 МГц. За работу с GPS отвечает NEO-6M от U-blox. Это, хоть и устаревший, но широко известный и бюджетный модуль с довольно четкой способностью к установлению местонахождения. Сведения фокусируются на экране от Nokia 5670. Также в модели присутствуют измеритель магнитных волн HMC5883L и акселерометр ADXL335.

Беспроводная система оповещения с датчиком движения

Полезное устройство, включающее в себя прибор перемещения и способность отдавать, согласно радиоканалу, знак о его срабатывании. Конструкция является подвижной и заряжается с помощью аккумулятора или батареек. Для его изготовления необходимо иметь несколько радиомодулей HC-12, а также датчик движения hc-SR501.

Прибор перемещения HC-SR501 функционирует при напряжении питания от 4,5 до 20 вольт. И для оптимальной работы от LI-Ion аккумулятора следует обогнуть предохранительный светодиод на входе питания и сомкнуть доступ и вывод линейного стабилизатора 7133 (2-я и 3-я ножки). По окончанию проведения этих процедур прибор приступает к постоянной работе при напряжении от 3 до 6 вольт.

Внимание: при работе в комплексе с радиомодулем HC-12 датчик временами ложно срабатывал. Во избежание этого необходимо снизить мощность передатчика в 2 раза (команда AT+P4)

Датчик работает на масле, и одного заряженного аккумулятора, емкостью 700мА/ч, хватит свыше, чем на год.

Минитерминал

Приспособление проявило себя замечательным ассистентом. Плата с микроконтроллером AVR нужна, как фундамент для изготовления аппарата. Из-за того, что экран объединён с контроллером непосредственно, то питание должно быть не более 3,3 вольт, так как при более высоких числах могут возникнуть неполадки в устройстве.

Вам следует взять модуль преобразователя на LM2577, а основой может стать Li-Ion батарея емкостью 2500мА/ч. Выйдет дельная комплектация, отдающая постоянно 3,3 вольта во всём трудовом интервале напряжений. С целью зарядки применяйте модуль на микросхеме TP4056, который считается бюджетным и достаточно качественным. Для того чтобы иметь возможность подсоединить минитерминал к 5-ти вольтовым механизмам без опаски сжечь экран, необходимо использовать порты UART.

Схема приставки контур

Автор статьи схему доработал относительно первоисточника, посему оригинал не прилагаю, плата и файл прошивки в общем архиве. Теперь возьмем неизвестный нам контур — приставка для измерения резонансной частоты контура.

Вставляем в не совсем пока удобную панельку, для проверки девайса сойдет, смотрим результат измерений:

Частотомер калибровался и тестировался на кварцевом генераторе 4 МГц, результат был зафиксирован такой: 4,00052 МГц. В корпусе частотомера решил вывести питание и на приставку +9 Вольт, для этого был сделан простой стабилизатор +5 В, +9 В, его плата на фото:

Забыл добавить, плата частотомера разведена немного к верху задом — для удобства съёма pic микроконтроллера, вращении подстроечного конденсатора, минимальной длины дорожек на LCD.

Теперь частотомер выглядит вот так:

Единственное, не стал исправлять пока ошибку в надписи мгГц, а так всё на 100% рабочее. Сборка и испытание схемы — ГУБЕРНАТОР.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: