Ru14670u1 — пьезоэлектрический датчик вибрации — google patents

Низкочастотного сейсмического датчика - sv6300

Разнообразие извещателей

Разновидностей пожарных детекторов существует очень много, но, в общем, их можно сгруппировать таким образом:

  • Аналоговая разновидность;
  • Адресная разновидность;
  • Автономная разновидность;
  • Извещатель пожарный ручной.

Исходя из названия, происходит и классификация пожарных извещателей по принципу работы, а главное по способу передачи тревожного сигнала о начале возгорания.

Рассмотрим каждый класс приборов более детально.

Аналоговый

Это наиболее известный тип датчиков, так как их применение началось очень давно. Их основная задача отправить на ПКП информацию по определенному набору характерных признаков пожара:

  • температурному;
  • дыму и тому подобное.

Работают по кольцевой схеме, когда все детекторы объединены в единый кольцевой проводной шлейф.

Такая схема дает возможность:

  • найти зоны обрыва шлейфа;
  • не реагировать на ложные сигналы;
  • различать и находить дефектные места шлейфа;
  • посылать как тревожные, так и информационные сигналы.

Может также устанавливаться пороговый датчик, который может сигнализировать о наличии определенного условия пожара, например, такого как температура.

На крышку прибора выведена пара светодиодов, каждый их которых подключен к своему шлейфу. Если горит зеленый светодиод — ситуация штатная и реакции датчика нет.

Если горит красный — произошел пожар или есть неполадка в цепи.

Есть и определенные недостатки:

Если от такого датчика поступил сигнал на пульт — непонятно, в каком месте возгорание и что именно случилось. Понятно только одно — тревога! А есть ли пожар?

Подобный датчик пожарной сигнализации монтируют в квартире или в небольших по площади помещениях. Если такие детекторы использовать в промышленных масштабах, то для того чтобы определить место возгорания и есть ли оно потребуется увеличить количество шлейфов.

Адресный

Пожарный адресный извещатель более точно указывает проблемную зону и имеет обратную связь с ПКП. Контрольный прибор благодаря тому, что у каждого датчика есть свой личный id-адрес, более достоверно определяет от какого детектора пошел тревожный сигнал.

Но и это еще не всё.

Он может определить тип опасности — задымление или огонь. Видна будет и температура в тревожной зоне. Может и определить свойства самого извещателя (год выпуска, серийный номер и прочее).

Понятно, что если есть такая подробная информация, то можно уточнить степень угрозы и принять необходимые меры.

Такие адресные датчики находят применение на объектах большой площади, где очень важно вовремя оценить уровень опасности и точность определения очага возгорания. Но есть и определённые неудобства у таких устройств. Но есть и определённые неудобства у таких устройств

Но есть и определённые неудобства у таких устройств.

На этапе проектирования противопожарной системы адресного типа необходимо более детальное описание раздела пусконаладочных работ. И скорее всего, забивать в систему id-адрес каждого устройства придется вручную, так как не все модели поддерживают автоматическое получение номера в противопожарной системе.

Автономный

Беспроводной автономный пожарный датчик в отличие от других устройств может работать:

  • Без монтажа к общему шлейфу;
  • Без подсоединения к наружному питанию.

В его наборе есть:

  • собственный аккумулятор;
  • звуковая сирена, которая подается примерно 4 минуты;
  • световая индикация;
  • тепловые пожарные специфические датчики, реагирующие на пожар.

Беспроводной датчик дыма автономного типа малогабаритный, округлой формы. Реагирует на образование дыма в охраняемой зоне.

Электроснабжение на батарейках, работы которой хватает примерно на год активного применения. Если заряд батарейки снизился, об этом сообщит мигающий светодиод на корпусе детектора.

Есть на рынке модификации, у которых электропитание происходит от несъемного аккумулятора. Они могут работать непрерывно в течение 10 лет.

Такой датчик определения дыма для квартиры обладает рядом преимуществ:

  • Отпадает необходимость подключения к центральному пульту;
  • Не нужен внешний источник электропитания;
  • Легко меняется дислокация;
  • Есть оповещение о низком заряде батареи;
  • Простота монтажа;
  • Громкий звук.

Недостатки:

  • Датчики дыма со временем неизбежно собирают внутри корпуса пыль и там могут накапливаться насекомые, что вызывает ложные сработки;
  • Если применяется несъемная батарея, то при истечении её срока действия необходимо менять весь линейный пожарный извещатель целиком.

Приложения

Пьезоэлектрические датчики — универсальные инструменты для измерения различных процессов. Они используются для обеспечения качества , контроля процессов , а также для исследований и разработок во многих отраслях промышленности. Пьер Кюри открыл пьезоэлектрический эффект в 1880 году, но только в 1950-х производители начали использовать пьезоэлектрический эффект в промышленных датчиках. С тех пор этот принцип измерения используется все шире и превратился в зрелую технологию с превосходной внутренней надежностью.

Они успешно используются в различных приложениях, таких как медицинские , аэрокосмические , ядерные приборы, а также в качестве датчика наклона в бытовой электронике или датчика давления в сенсорных панелях мобильных телефонов. В автомобильной промышленности пьезоэлектрические элементы используются для контроля процесса сгорания при разработке двигателей внутреннего сгорания . Датчики либо устанавливаются непосредственно в дополнительные отверстия в головке блока цилиндров, либо свеча зажигания / накаливания оснащается встроенным миниатюрным пьезоэлектрическим датчиком.

Развитие пьезоэлектрической технологии напрямую связано с рядом присущих ей преимуществ. Высокий модуль упругости многих пьезоэлектрических материалов сравним с модулем упругости многих металлов и достигает 10 6 Н / м² . Несмотря на то, что пьезоэлектрические датчики представляют собой электромеханические системы, которые реагируют на сжатие , чувствительные элементы показывают почти нулевой прогиб. Это обеспечивает прочность пьезоэлектрических датчиков, чрезвычайно высокую собственную частоту и отличную линейность в широком диапазоне амплитуд . Кроме того, пьезоэлектрическая технология нечувствительна к электромагнитным полям и излучению , что позволяет проводить измерения в суровых условиях. Некоторые материалы , используемые (особенно галлий фосфат или турмалин ) очень стабильны при высоких температурах, что позволяют датчики , чтобы иметь рабочий диапазон вплоть до 1000 ° C . Турмалин показывает пироэлектричество в дополнение к пьезоэлектрическому эффекту; это способность генерировать электрический сигнал при изменении температуры кристалла. Этот эффект также характерен для пьезокерамических материалов. Gautschi в Piezoelectric Sensorics (2002) предлагает эту сравнительную таблицу характеристик материалов пьезосенсоров по сравнению с другими типами:

Принцип Чувствительность к деформации [В / µε] Порог Отношение диапазона к пороговому значению
Пьезоэлектрический 5.0 0,00001 100 000 000
Пьезорезистивный 0,0001 0,0001 2 500 000
Индуктивный 0,001 0,0005 2 000 000
Емкостный 0,005 0,0001 750 000
Резистивный 0,000005 0,01 50 000

Одним из недостатков пьезоэлектрических датчиков является то, что их нельзя использовать для действительно статических измерений. Статическая сила приводит к возникновению фиксированного заряда на пьезоэлектрическом материале. В обычной считывающей электронике несовершенные изоляционные материалы и снижение внутреннего сопротивления датчика вызывают постоянную потерю электронов и приводят к уменьшению сигнала. Повышенные температуры вызывают дополнительное падение внутреннего сопротивления и чувствительности. Основное влияние на пьезоэлектрический эффект заключается в том, что с увеличением давления и температуры чувствительность снижается из-за образования двойников . В то время как кварцевые датчики необходимо охлаждать во время измерений при температурах выше 300 ° C , особые типы кристаллов, такие как фосфат галлия GaPO4, не демонстрируют образования двойников вплоть до точки плавления самого материала.

Однако неверно, что пьезоэлектрические датчики могут использоваться только для очень быстрых процессов или в условиях окружающей среды. В самом деле, многочисленные пьезоэлектрические приложения производят квазистатических измерений, а также другие приложения работают при температурах выше , чем 500 ° C .

Пьезоэлектрические датчики также могут использоваться для определения ароматов в воздухе путем одновременного измерения резонанса и емкости. Электроника с компьютерным управлением значительно расширяет диапазон потенциальных применений пьезоэлектрических датчиков.

Пьезоэлектрические датчики также встречаются в природе. Коллаген в кости пьезоэлектрический, и некоторые считают, что он действует как датчик биологической силы.

Схема устройства

Принцип работы
заключается в следующем. Сигнал с A1 датчика вибрации поступает на усилитель, который выполнен на VT1, VT2 и управляет тиристором VS1. На базу транзистора VT2 также поступает сигнал от концевых выключателей дверей, капота, багажника. На транзисторах VT3,VT4 собран таймер, который управляет анодом тиристора VS1. В цепи базы VT3 используется конденсатор большой ёмкости C3. Благодаря чему при постановке на охрану надёжно спрятанном тумблером C3 начинает заряжаться через сирену автомобиля и цепь из резисторов R6,R7. В процессе заряда конденсатора VT3,VT4 будут закрыты, следовательно, тиристор VS1 заперт. Благодаря чему схема встаёт под охрану с некоторой задержкой, давая водителю время покинуть авто и закрыть дверь.

По прошествии 20 секунд конденсатор C3 набирает ёмкость, VT3 открывается и включает охрану в работу. Предположим, произошло воздействие на автомобиль или вскрытие какой-либо двери. Тиристор VS1 отпирается, начинает заряжаться C4 через VS1, VT4, R10. Тиристор устроен таким образом, что он остаётся открытым при прохождении постоянного тока. При закрывании двери (прекращении сигналов) тревожная сирена будет извещать владельца о проникновении. Если срабатывание датчиков произошло с появлением владельца, то за время заряда C4 (20 секунд) он отключит замаскированный тумблер. Если этого не сделать, то откроются VT5,VT6, включится реле KV1 , которое в свою очередь подключит сирену. Чтобы не беспокоить соседей и самому не бежать к автомобилю во время ложных срабатываний, как например проезжающий мимо грузовик, в данной автосигнализации реализована функция ограничения времени тревоги. Действует она следующим образом. Когда контакты KV1 замкнуты и ток протекает через R6,R7 , заряжается конденсатор C3. Через небольшое время закроются VT2, VT3, VS1, VT5, VT6 и реле KV1 отключится и снова возьмёт под охрану.

Какие детали
можно использовать для реализации схемы. Требования к ним не критичные. Конденсаторы и резисторы любого типа, желательно малогабаритного. Реле KV1 с рабочим напряжением 12 вольт и током катушки в пределах 100 мА.Силовые контакты реле должны выдерживать ток в 5 А. Но можно снизить до 0,5 А, если применить промежуточное реле.

Датчик вибрации A1 не сложно изготовить самому. Он выполнен в виде катушки со стальным сердечником, от которого на небольшом расстоянии закреплен постоянный магнит на плоской пружине. При малейшем ударе по кузову автомобиля колебания через пружину передадутся на магнит. Тот в свою очередь создаст переменное магнитное поле, которое наведёт ЭДС в катушке. Последняя размером Ø10Χ15 мм мотается на сердечнике Ø3 мм из стали. Для обмотки используют медный провод 0,06…0,07 мм. Магнит с размерами 25Χ10Χ5 мм при помощи клея и ниток нужно закрепить на пружине. В качестве которой можно использовать пружину от будильника. Длина последней выбирается в пределах 60 — 80 мм

В процессе сборки датчика удара следует обратить внимание на то, чтобы магнит мог располагаться как можно ближе к боковой стороне катушки. Готовый датчик вибрации следует располагать в пространстве так, чтобы магнит имел возможность совершать колебания перпендикулярно поверхности земли

Пример реализации

Схема подключения датчика вибрации к ардуино

Вариантом использования вибрационного датчика может стать охранная сигнализация, в которой при ударе о поверхность, с закрепленным на ней устройством, происходит сработка (в данном примере загорится светодиод, присоединенный к пину 13). Для проекта следует подготовить такие детали:

  • плату Arduino Uno;
  • датчики вибрации 801S или Logo sensors v1.5;
  • макетную плату;
  • соединительные провода.

Сборка схемы производится согласно рисунку. Цифровой вывод DO соединяем с цифровым пином 2. При наличии вибраций значение сигнала многократно увеличивается и при достижении порогового значения, которое устанавливается потенциометром, на вывод DO подается логическая единица. Мы обрабатываем эту ситуацию, считывая значение функцией digitalRead, после чего подаем с помощью функции 5В на порт 13 и загорается встроенный в плату светодиод.

Пример скетча

Основой датчика служит пьезоэлемент от звукоизлучателя ЗП-2, ЗП-4 или ЗП-5. Общий вид датчика (сбоку) показан на рис.1,а. Пьезоэлемент 2 одной из обкладок припаян к фолымрованной площадке печатной платы 1. К верхней по рисунку обкладке пьезоэлемента 2 припаивают стойку 4, согнутую в виде буквы Л из упругой стальной проволоки диаметром 0,5 мм. Вид на стойку 4 по стрелке А показан на рис. 1,6. Лапы и седловину стойки нужно заранее облудить.

Консоль 3 выгибают из такой же проволоки и надежно укрепляют на одном из ее концов груз 5 массой 10…15 г из свинца или припоя. После этого консоль припаивают одним концом к плате, а примерно серединой — к седловине стойки 4.

Во избежание отрыва верхней обкладки от пьезоэлемента перед припайкой консоли ее слегка изгибают так, чтобы после установки на место она создавала на пьезоэлементе избыточное прижимающее упругое усилие. Размеры деталей датчика непринципиальны, поэтому на рис.1 не даны. Паять необходимо легкоплавким припоем.

Выводами датчика служат фольговая площадка, к которой припаян пьезоэлемент, и впаянное в плату основание консоли. Плату укрепляют на поверхности,

вибрацию которой надлежит контролировать. При механическом колебании этой поверхности на выводах датчика возникает несколько слабых импульсов длительностью З…15 мс.

Для того чтобы усилить эти импульсы и придать им форму, необходимую для дальнейшей обработки, сигнал с датчика подают на вход усилителя-формирователя (см. схему на рис.2). Операционный уси

литель DA1 работает в режиме максимального усиления, а транзистор VT1 — в режиме переключения. Диод VD1 увеличивает своим напряжением отсечки зону нечувствительности транзистора.

ОУ вместе с диодом и транзистором образуют компаратор напряжения, отличающийся малым энергопотреблением. Порог срабатывания компаратора устанавливают подстроечным резистором R2. Если амплитуда отрицательной полуволны сигнала датчика менее напряжения на резисторе R2, транзистор VT1 остается закрытым, а выходное напряжениеравным нулю.

Механическое возбуждение датчика приводит к появлению на выходе формирователя нескольких прямоугольных импульсов длительностью 3…15 мс, по амплитуде пригодных для прямого введения их в цифровой анализатор, выполненный на микросхемах КМОП. Простейшее подобное устройство, способное выделить полезный сигнал на фоне ложных срабатываний, представляет собой счетчик(001 на рис.2), периодически обнуляемый по входу R импульсами электронных часов или специального генератора. Сигнал тревоги — напряжение высокого уровня — появится на выходе лишь тогда, когда число импульсов на входе счетчика в интервале между двумя соседними обнуляющими импульсами достигнет некоторого числа, устанавливаемого переключателем SA1 (на рис.2 оно установлено равным восьми).

Если не задаваться решением задачи исключения ложных сигналов, то сигнал с коллектора транзистора VT1 можно подавать непосредственно на вход узла формирования сигнала тревоги.

Как показывает опыт, датчик практически не реагирует на акустические сигналы, распространяющиеся в воздушной среде. Чувствительный прежде всего к нормальной составляющей вибраций, он довольно хорошо воспринимает и возмущения, лежащие в плоскости пьезоэле-мента,-очевидно вследствие возникновения реакции в точках крепления стойки. Таким образом, датчик реагирует на вибрации произвольной ориентации. Ток, потребляемый усилителем-формирователем в режиме ожидания при напряжении питания 9 В, не превышает -18 мкА, при 5 В — 10 мкА.

C этой схемой также часто просматривают:

Датчики вибрации принцип работы — Портал по безопасности

Перейти к выбору и покупке датчиков вибрации

Датчик вибрации (виброметр) – прибор, позволяющий определять параметры вибрационных явлений. Наиболее часто виброметры используются для определения:

  1. Виброскорости
  2. Виброускорения
  3. Виброперемещения

Проще говоря, если вибрирующий объект считать простым осциллятором, то виброметр позволяет получить сведения как о базовых параметрах его колебаний (частота и амплитуда), так и, в некоторых случаях, получить спектральную характеристику колебательного процесса.

Рисунок 1. Схема датчика вибрации.

Общая схема датчика вибрации содержит два основных блока (Рисунок 1): вибропреобразователь (1) и электронный блок обработки (2). Функциональное назначение первого блока – преобразование механических вибраций в электрический сигнал. Механизмов преобразования несколько:

  • Пьезоэлектрический
  • Оптический
  • Вихретоковый
  • Индукционный

Механизм преобразования в значительной мере определяет как характеристики прибора, так и его стоимость.

Второй блок – электронный блок обработки – служит для «расшифровки» полученного сигнала. Как правило, на входе таких блоков стоит аналогово-цифровой преобразователь, и основная часть операций над сигналом производится уже в цифровом виде, что расширяет функциональные возможности процесса пост-обработки, улучшает помехоустойчивость и позволяет осуществлять вывод информации по внешнему интерфейсу.

При использовании на производстве стационарные виброметры могут входить в состав регулирующих систем в качестве датчиков обратной связи, для этих целей некоторые модели виброметров имеют аналоговый выходной сигнал (как правило, напряжение).

Для получения комплексной характеристики вибрационного процесса в состав измерительной системы может быть добавлен спектроанализатор. Если спектроанализатор многоканальный – он может служить основой распределённой системы вибрационной диагностики, содержащей более одного вибродатчика.

В настоящее время большинство виброметров относится к одному из двух типов:

  1. Оптический виброметр
  2. Пьезоэлектрический виброметр

Рассмотрим более подробно каждый тип датчиков.

Пьезоэлектрический датчик: описание, ускорение, принцип работы и особенности

Для получения данных о температуре либо давлении атмосферной среды применяются специальные датчики пьезоэлектрического типа. К основным параметрам устройств относится не только рабочая частота, но проводимость, а также сопротивление. Стандартная модификация состоит из мембраны, которую окружают кварцевые пластины. Корпус в основном делается из металлических дисков. Для подключения к измерительной аппаратуре применяются выводы, которые подсоединены к подпятнику.

Принцип работы элемента

Существуют различные пьезоэлектрические датчики. Принцип работы элементов построен на изменении разрядности мембраны. Кварцевые пластины в данном случае играют роль проводников. Для преобразования частоты у моделей используется экранированная пластина. Передача сигнала на мембрану осуществляется через подпятник. Разница разрядов фиксируется в измерительных приборах. Через выводы на датчиках данные могут быть обработаны и сохранены.

По назначению выделяют датчики силы, давления, вибрации и ускорения. Также существуют модификации для замера температуры. Еще разделение модификаций происходит по частотности. Модели до 3 Гц отличаются компактными размерами. Модификации с высокой проводимостью способны работать в условиях повышенной влажности.

Датчики силы

Пьезоэлектрические датчики силы в последнее время принимают активное участие в лабораторных исследованиях. Они отличаются повышенной точностью и неплохой проводимостью

Однако важно отметить, что рабочая частота в данном случае находится на уровне 4 Гц

Как выбрать?

К выбору тепловых извещателей следует подходить крайне скрупулёзно

Эти устройства имеют равное значение по важности с датчиками дыма. Для установки пожарной сигнализации потребуется пригласить мастеров, так как самостоятельно произвести монтаж очень сложно. Установка сигнализации и всей периферии проводится на основании схем, которые отличаются по типам устройств

Установка сигнализации и всей периферии проводится на основании схем, которые отличаются по типам устройств.

Взрывозащищённые тепловые извещатели обладают металлическим корпусом. Такие модификации используются в промышленных зонах. В случае установки пожарной сигнализации на территориях складских помещений, следует применять модели с термокабелем, который соединяет точечные извещатели в одну цепь.

Реферат патента 1985 года Трехкомпонентный датчик для сейсмического моделирования

ТРЕХКОШОНЕНТНЫЙ ДАТЧИК ДЛЯ СЕЙСМИЧЕСКОГО МОДЕЛИРОВАНИЯ, содержащий чувствительный элемент в виде пьезоэлементов с электродами. отличающийся тем, что, с целью повышения точности измерений и чувствительности, чувствительный злемент выполнен в виде блока из четырех идентичных и соединенных механически попарно по двум .взаимно перпендикулярным граням пьезоэлементов в виде призм, один электрод которых заземлен, а каждьй из четырех других электродов подключен к индивидуальному измерительному каналу, состоящему из последовательно соединенных усилителя и фазоинвертора, при этом в датчик введены сумматоры, Х Y н Z — компонент колебаний, а выходы фазоинверторов соединены с (Л сумматором Z-компоненты колебаний, выходы первого и третьего усилителя, с второго и четвертого фазоинверторов с сумматором Y-компоненты, а выходы третьего и четвертого усилителя, первого и второго фазоинвертора — с сумматором Х-компоненты, х о К) СП

Виброметры для измерения вибрации вращающегося оборудования

Виброметр измеряет и оценивает вибрацию агрегатов с вращающимися частями. Это — двигатели, насосы, вентиляторы, генераторы. Вибрация таких агрегатов повторяется с каждым оборотом вала.

Виброметры измеряют интегральное значение вибрации (одно число). Самое популярное значение – , так как существуют стандарты для определения состояния агрегата по СКЗ виброскорости. Это число пропорционально мощности сил, вызывающих вибрацию агрегата.

Чаще всего вибрация в виброметрах измеряется . Этот диапазон указан в ГОСТ и позволяет измерять одинаковое значение вибрации на разных приборах.

Виброметр – это очень полезный прибор для оценки состояния оборудования. Максимальное значение вибрации, при котором состояние агрегата считается аварийным . Значение задаётся в паспорте на агрегат или в ГОСТ ИСО 10816-1-97. «Вибрация. Контроль состояния машин по результатам измерений вибрации на невращающихся частях». Сравнение текущей вибрации с нормой позволяет оценить состояние агрегата.

Измерение вибрации виброметром очень быстрое и не требует подготовительных работ. Можно измерить 100 агрегатов за смену с выдачей отчётов о состоянии оборудования на предприятии.

Значения вибрации, измеренные через некоторое время (например, через 1 месяц) позволяют строить прогноз развития вибрации и планировать сроки следующих ремонтов. Это даёт значительную экономию денег, по сравнению с плановыми ремонтами. Такая система планирования ремонтов используется в нашей программе Аврора-2000 .

Значение вибрации, измеренное виброметром можно использовать и для диагностики дефектов агрегата. Например, по СКЗ виброскорости отлично диагностируется расцентровка и небаланс . Состояние крепления к фундаменту тоже проще оценить виброметром. Виброметром даже можно балансировать агрегат не используя отметчик фазы (метод трех пусков с пробными массами).

При этом виброметры значительно дешевле виброанализаторов и проще в работе. Однако, для изучения сложных случаев дефектов необходим виброанализатор и опыт вибродиагностики.

Современные виброметры дополнительно имеют режимы измерения спектров и сигналов, память для сохранения замеров и передачи их в компьютер, режим измерения по маршруту, датчики температуры, оборотов и ударных импульсов от подшипников качения.

В виброанализаторах всегда есть режим виброметра. Он делается программно и не удорожает изготовление прибора.

внешний датчик

Виброметры имеют внутренний датчик вибрации, встроенный в корпус прибора или внешний датчик, подключённый к прибору проводом. Внутренний датчик – это компактность прибора, а внешний датчик позволяет измерить вибрацию в труднодоступных местах.

ViPen – виброметр-ручка с оценкой состояния подшипников и температурой
Виброметр-К1 – простой виброметр. Предназначен для проведения измерения вибрации
в размерности СКЗ виброскорости (мм/с) в стандартном диапазоне частот от 10 до 1000 Гц
ДПК-Вибро – компактный виброметр. Кроме вибрации, умеет оценивать состояние подшипников качения, показывать сигналы и спектры и даже хранить их и передавать в компьютер (правда, всего несколько штук)
– малогабаритный виброметр для контроля уровня вибрации с возможностью анализа сигналов и спектров. Уже устаревший, но всё ещё популярный прибор. Имеет встроенный в внешний датчик

Виброметры для измерения вибрации, воздействующей на человека

Измерение такой вибрации используется в сфере охраны труда. Приборы отличаются от приборов для измерения вибрации вращающегося оборудования. Они называются виброметры-шумомеры.

Прибор измеряет мощность вибрации за какой-то период времени, например, за рабочую смену, показывает мощность вибрации в полосах частот. Вибрация разных частот оказывает разное влияние на человека, поэтому используются нормирующие коэфициенты для частных полос. В дополнение шумомеры умеют измерять акустический шум на рабочем месте.

Предельные значения вибрации нормируется СанПиНами. Библиотеку этих нормативных документов можно найти на сайте НТМ-Защита:

Похожие патенты RU2654973C1

название год авторы номер документа
ЭЛЕКТРООПТИЧЕСКАЯ РЕГИСТРИРУЮЩАЯ СИСТЕМА ДЛЯ МОРСКОЙ СЕЙСМОРАЗВЕДКИ 1991
  • Ян Гатеман
  • Бертиль Гатеман
RU2075764C1
СПОСОБ СЕЙСМИЧЕСКОГО МОНИТОРИНГА ПРОЦЕССА ОСВОЕНИЯ НЕФТЕГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЙ СЕВЕРА РФ 2021
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Ефимов Андрей Николаевич
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Богоявленский Василий Игоревич
  • Богоявленский Игорь Васильевич
  • Кирсанов Сергей Александрович
  • Дяченко Илья Александрович
RU2761052C1
СПОСОБ СЕЙСМИЧЕСКОЙ РАЗВЕДКИ ПРИ ПОИСКЕ УГЛЕВОДОРОДОВ И СПОСОБ ОПРЕДЕЛЕНИЯ ЗАЛЕГАНИЯ ПРОДУКТИВНЫХ НА УГЛЕВОДОРОДЫ ПЛАСТОВ И СЕЙСМИЧЕСКАЯ СТАНЦИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Жуков Юрий Николаевич
  • Румянцев Юрий Владимирович
  • Чернявец Владимир Васильевич
  • Павлюкова Елена Раилевна
  • Бродский Павел Григорьевич
  • Леньков Валерий Павлович
  • Суконкин Сергей Яковлевич
  • Червинчук Сергей Юрьевич
  • Леденев Виктор Валентинович
  • Левченко Дмитрий Герасимович
  • Аносов Виктор Сергеевич
RU2433425C2
СПОСОБ СЕЙСМИЧЕСКОЙ РАЗВЕДКИ ПРИ ПОИСКЕ УГЛЕВОДОРОДОВ И СЕЙСМИЧЕСКИЙ КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Суконкин Сергей Яковлевич
  • Рыбаков Николай Павлович
  • Белов Сергей Владимирович
  • Червинчук Сергей Юрьевич
  • Кошурников Андрей Викторович
  • Пушкарев Павел Юрьевич
  • Чернявец Владимир Васильевич
RU2431868C1
ВОЛОКОННО-ОПТИЧЕСКАЯ СКВАЖИННАЯ СЕЙСМИЧЕСКАЯ СИСТЕМА ИЗМЕРЕНИЯ НА ОСНОВЕ РЭЛЕЕВСКОГО ОБРАТНОГО РАССЕЯНИЯ 2012
  • Ласкомб Джон
  • Самсон Этьенн М.
  • Майда Джон Л.
RU2561009C2
СКВАЖИННОЕ РАЗМЕЩЕНИЕ ОПТИЧЕСКОГО ВОЛОКНА ДЛЯ СЕЙСМИЧЕСКИХ ИССЛЕДОВАНИЙ 2013
  • Виньо Пьер
  • Хартог Артур Х.
  • Фринье Бернар
RU2612957C2
СПОСОБ СЕЙСМОРАЗВЕДКИ 2005 RU2271554C1
СПОСОБ РЕГИСТРАЦИИ СЕЙСМОСИГНАЛОВ НА АКВАТОРИИ МОРЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Левченко Дмитрий Герасимович
  • Парамонов Александр Александрович
  • Фёдоров Александр Анатольевич
  • Чернявец Владимир Васильевич
RU2270464C1
СПОСОБ ОЦЕНКИ НЕФТЕГАЗОНОСНОСТИ ПОРОД 2007
  • Маловичко Алексей Александрович
  • Шутов Геннадий Яковлевич
  • Маловичко Дмитрий Алексеевич
  • Боровик Сергей Борисович
  • Дягилев Руслан Андреевич
  • Шулаков Денис Юрьевич
  • Бутырин Павел Генрихович
  • Сергеев Андрей Аркадьевич
  • Верхоланцев Филипп Геннадьевич
  • Баранов Юрий Валентинович
RU2321024C1
Способ классификации подвижных объектов наземной техники с использованием особенностей сцепления их с почвой 2021
  • Афанасьев Олег Владимирович
  • Чаплыгин Александр Александрович
  • Подтынников Николай Александрович
  • Лукьянчиков Виктор Дмитриевич
  • Нартов Александр Юрьевич
RU2776588C1

оценка

Сеть сейсмографов используется для определения точного места и времени землетрясений. Разница во времени оценивается для точной локализации ( принцип пеленга ). Поскольку сейсмические волны распространяются внутри Земли со скоростью несколько километров в секунду, землетрясения на континентах регистрируются и локализуются через короткое время. Помимо природных землетрясений, также могут быть зарегистрированы:

  • индуцированный тремор , например Б. землетрясения, вызванные плотинами
  • Микротрясение, микросейсмические волнения
  • Взрывные работы (например, в карьерах)
  • атомные взрывы
  • Дорожные колебания

В зависимости от конструкции прибора

  • ускорение
  • скорость
  • Отклонение (движение земли)

Из записей можно вывести:

  • величина землетрясения
  • место происхождения ( эпицентр и гипоцентр )
  • частотный спектр
  • временное, пространственное и энергетическое распределение

Сейсмограммами являются графической записью сейсмографа. Подвижки грунта можно рассчитать по сейсмограмме. Дальнейшая оценка может включать Определить на естественную частоте вибрации зданий или, в другом частотном диапазоне, частоты собственных колебаний Земли , вызванной сильными землетрясениями.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: