Мультивибраторы,несимметричный и бистабильный мультивибратор одновибратор принцип действия и применение

Цифровая электроника

Опыты с микросхемой К155ЛА3

На макетную плату установите микросхему К155ЛА3 к выводам подсоедините питание (7 вывод минус, 14 вывод плюс 5 вольт). Для выполнения замеров лучше применить стрелочный вольтметр, имеющий сопротивление более 10 кОм на вольт. Спросите, почему нужно использовать стрелочный? Потому, что, по движению стрелки, можно определить наличие низкочастотных импульсов.

После подачи напряжения, измерьте напряжение на всех ножках К155ЛА3. При исправной микросхеме напряжение на выходных ножках (3, 6, 8 и 11) должно быть около 0,3 вольт, а на выводах (1, 2, 4, 5, 9, 10, 12, и 13) в районе 1,4 В.

Для исследования функционирования логического элемента 2И-НЕ микросхемы К155ЛА3 возьмем первый элемент. Как было сказано выше, его входом служат выводы 1 и 2, а выходом является 3. Сигналом логической 1 будет служить плюс источника питания через токоограничивающий резистор 1,5 кОм, а логическим 0 будем брать с минуса питания.

Опыт первый (рис.1):
Подадим на ножку 2 логический 0 (соединим ее с минусом питания), а на ножку 1 логическую единицу (плюс питания через резистор 1,5 кОм). Замерим напряжение на выходе 3, оно должно быть около 3,5 В (напряжение лог. 1)

Вывод первый
: Если на одном из входов лог.0, а на другом лог.1, то на выходе К155ЛА3 обязательно будет лог.1

Опыт второй (рис.2):
Теперь подадим лог.1 на оба входа 1 и 2 и дополнительно к одному из входов (пусть будет 2) подключим перемычку, второй конец которой будет соединен с минусом питания. Подадим питание на схему и замерим напряжение на выходе.

Оно должно быть равно лог.1. Теперь уберем перемычку, и стрелка вольтметра укажет напряжение не более 0,4 вольта, что соответствует уровню лог. 0. Устанавливая и убирая перемычку можно наблюдать как «прыгает» стрелка вольтметра указывая на изменения сигнала на выходе микросхемы К155ЛА3.

Вывод второй:
Сигнал лог. 0 на выходе элемента 2И-НЕ будет только в том случае, если на обоих его входах будет уровень лог.1

Следует отметить, что неподключенные входы элемента 2И-НЕ («висят в воздухе»), приводит к появлению низкого логического уровня на входе К155ЛА3.

Опыт третий (рис.3):
Если соединить оба входа 1 и 2, то из элемента 2И-НЕ получится логический элемент НЕ (инвертор). Подавая на вход лог.0 на выходе будет лог.1 и наоборот.

Вот схемы с применением микросхемы к155ла3:

3. Испытатель любых транзисторов.
Вот схема:
Вместо диодов Д9 можно поставить д18, д10.
Кнопки SA1 и SA2 есть переключатели для проверки прямых и обратных транзисторов.

4. Два варианта отпугивателя грызунов.
Вот первая схема:
С1 – 2200 мкФ, С2 – 4,7 мкФ, С3 – 47 — 100 мкФ, R1-R2 – 430 Ом, R3 – 1 ком, V1 – КТ315, V2 — КТ361. Также можно поставить транзисторы серии МП. Динамическая головка — 8…10 ом. Питание 5В.

Второй вариант:

С1 – 2200 мкФ, С2 – 4,7 мкФ, С3 – 47 — 200 мкФ, R1-R2 – 430 Ом, R3 – 1 ком, R4 — 4,7 ком, R5 – 220 Ом, V1 – КТ361 (МП 26, МП 42, кт 203 и т.п.), V2 – ГТ404 (КТ815, КТ817), V3 – ГТ402 (КТ814, КТ816, П213). Динамическая головка 8…10 ом.
Питание 5В.

Структурно, любая цветомузыкальная(светомузыкальная) установка состоит из трех элементов.
Блока управления, блока усиления мощности и выходного оптического устройства.

В качестве выходного оптического устройства можно использовать гирлянды, можно оформить его в
виде экрана(классический вариант) или применить электрические светильники направленного действия
— прожектора, фары. Т. е. подходят любые средства, позволяющие создавать определенный набор красочных световых
эффектов.

Блок усиления мощности — это усилитель(усилители) на транзисторах с тиристорными регуляторами на выходе.
От параметров элементов использованых в нем зависит напряжение и мощность источников света выходного
оптического устройства.

Блок управления контролирует интенсивность света, и чередование цветов.
В сложных специальных установках, предназначенных для оформления сцены во время различных видов шоу —
цирковых, театральных и эстрадных представлений этот блок управляется вручную.
Соответствено, требуется участие как минимум — одного, а максимум — группы операторов-осветителей.

Если блок управления контролируется непосредственно музыкой, работает по какой — либо заданной
программе, то цветомузыкальная установка считается — автоматической.
Именно такого рода «цветомузыки» обычно собирают своими руками начинающие конструкторы — радиолюбители,
на протяжении 50-ти последних лет.

Описание работы одновибратора на логических элементах

Одновибратор состоит из двух логических элементов микросхемы К155ЛА3: первый из них применен в роли 2И-НЕ элемента, второй подключен как инвертор. Подача входного сигнала осуществляется посредством кнопки SA1. Кнопка в данной схеме применяется только в качестве имитации входного сигнала. В действующих же устройствах на данный вход обычно поступает сигнал с каких-либо узлов схемы.

Для наглядности работы одновибратора, к его выходу можно подключить светодиод через токоограничивающий резистор. Чтобы видеть свечение светодиода, нужно чтобы выходной импульс был достаточно продолжительный, поэтому выберем конденсатор емкостью 500 мкф.

Подадим питание и замерим стрелочным вольтметром напряжение на выводах логических элементов DD1.1 и DD1.2 микросхемы К155ЛА3. На выходе логического элемента DD1.1 микросхемы К155ЛА3 должен быть логический ноль (не более 0,4 вольта) и единица (более 2,4 вольта) на его входе 2. Так же на выходе 6 логического элемента DD1.2 будет единица и соответственно единица на выводе 1 на DD1.1.

Одновременно с этим процессом загорится и светодиод, подсказывая нам, что на выходе одновибратора появился одиночный импульс высокого уровня. Если параллельно конденсатору С1 подключить конденсатор такой же емкости, то мы заметим, что продолжительность импульса возросла вдвое. Так же изменяя сопротивление резистора R1 можно добиться изменения длительности импульса.

Подведем итог: Чем выше емкость конденсатора C1 и сопротивление R1, тем продолжительнее выходной импульс вырабатываемый одновибратором на К155ЛА3.

В данной схеме одновибратора сопротивление R1 и емкость Cl представляют собой времязадающую RC цепь. При малых значениях C1 и R1 длительность импульса будет настолько короткой, что визуально обнаружить его с помощью вольтметра или светодиода не реально. В этом случае наличие импульса можно зафиксировать с помощью осциллографа или логического пробника.

В ждущем состоянии вывод 2 микросхемы К155ЛА3 никуда не подсоединен, поскольку контакты SA1 еще незамкнуты. По сути, на входе находится единица. Зачастую вход в таком случае соединяют с плюсом питания через сопротивление 1 кОм.

Из-за подключенного сопротивления R1, на входе логического элемента DD1.2 находится лог. 0, а на его выходе лог. 1. Поскольку на обоих выводах конденсатора лог. 0, он полностью разряжен.

В момент нажатия SA1, на вход 2 логического элемента DD1.1 поступает электрический сигнал низкого уровня. Поэтому на выводе 3 логического элемента DD1.1 единица. Положительный фронт через C1 подается на вход DD1.2. Соответственно с выхода его логический 0 поступит на вход DD1.1 и он будет присутствовать там даже после отпускания кнопки.

Одновременно через резистор происходит заряд конденсатора. И по окончании заряда напряжение на резисторе упадет и это переведет выход элемента DD1.2 в лог. 1. Одновибратор вернется в исходное состояние — в ждущий режим.

Следует заметить, то входной сигнал (нажатие кнопки) должен быть меньше по продолжительности, чем выходной иначе выходных импульсов не будет.

Источник

Классификация генераторов импульсов. Автоколебательные генераторы

Определение 1

Генератор импульсов — это устройство, которое способно создавать волны определенной формы.

Определение 2

Генератор прямоугольных импульсов — это генератор, который используется для получения колебаний прямоугольной формы.

В настоящее время существует большое разнообразие генераторов импульсов, которые могут классифицироваться по следующим признакам:

  1. Выходная последовательность основных импульсов – кодовые комбинации, одиночные импульсы, кодовые пакеты, парные импульсы и т.п.
  2. Количество каналов – одноканальные и многоканальные.

Генераторы прямоугольных импульсов широко используются в телевидении, технике, радиотехнике, системах автоматического управления. В данных генераторах, в отличии от генераторов гармонических колебаний, используется цепь обратного порядка, и активный элемент функционирует в нелинейном режиме. В зависимости от режима работы различают два основных вида генераторов прямоугольных импульсов:

  1. Автоколебательные мультивибраторы
  2. Ждущие мультивибраторы.

Пример схемы автоколебательного мультивибратора изображена на рисунке ниже.

Рисунок 1. Схема автоколебательного мультивибратора. Автор24 — интернет-биржа студенческих работ

Активным элементом автоколебательного мультивибратора является инвертирующий триггер Шмитта, который реализован на операционном устройстве и двух резисторах (R1 и R2). Функция третьего резистора и конденсатора заключается в формировании времязадающей цепи, которая определяет продолжительность формируемых сигналов. Операционный усилитель в данном случае охвачен связью R1 — R2 и находится в режиме насыщения, поэтому напряжение на выходе равняется напряжению насыщения (Uвых = Uнас). Переключение операционного усилителя из положительного насыщения в отрицательное или обратно происходит в том случае, когда напряжение, сформированное на инвертирующем входе, достигает отрицательного или положительного порога срабатывания – –BUнас или Buнас. В данном случае B – коэффициент обратной связи, который рассчитывается по следующей формуле:

Принцип работы

Допустим, после включения питания на входе DD1.1 установился низкий уровень. Значит, на выходе будет высокий уровень, который попадает на вход DD1.2, на выходе которого, в свою очередь, будет опять низкий уровень. Конденсатор C1 разряжен. И он начинает заряжаться через резистор R1, который правым выводом подключён к выходу DD1.1 — к точке, где потенциал высокий.

Процесс заряда конденсатора C1

Вы вправе спросить: почему же этот ток не утекает на вход элемента DD1.1 — ведь на этом входе в данный момент низкий потенциал? Кажется, что логический элемент должен скушать весь ток, а конденсатору ничего не достанется. Ответ: дело в высоком входном сопротивлении элементов DD. На их входы ответвляется мизерная часть тока, которой можно пренебречь. Кстати, благодаря этому факту, сопротивление R1 может быть достаточно большим, несколько мОм,  что позволяет получить довольно низкие частоты генерации.

Итак, постепенно напряжение на C1 растёт, и в какой-то момент на левой обкладке накопится достаточный «плюс», который переключит DD1.1 в состояние 1 на входе, 0 на выходе. Тут же и DD1.2 поменяет состояние на противоположное: 0 на входе, 1 на выходе. И процессы в RC-цепочке пойдут в обратную сторону, до тех пор, пока напряжение на конденсаторе снова не переключит DD1.1, а за ним DD1.2 и весь цикл повторится сначала. Описание несколько упрощённое (вблизи момента переключения там происходят чуть более сложные процессы), но достаточное для первоначального понимания.

Ждущий мультивибратор — одновибратор — формирователь импульсов.

Схемы формирователей импульсов на цифровых КМОП микросхемах, онлайн расчёт времязадающих цепей и длительности выходных импульсов. — Почему ждущий? — Почему, почему? Потому что не спит ни днём, ни ночью — он на дежурстве, он ждёт! И ожидает он не трамвая на остановке, а внешнего сигнала запуска для формирования одиночного выходного импульса фиксированной длительности, после чего возвращается в первоначальное состояние самопроизвольно, без каких-либо воздействий и утомительных уговоров. — А почему одновибратор? — Ну, так как, почему? Выдержан, характер нордический, в генерацию, подобно мультивибратору, не впадает, имеет одно устойчивое состояние. Говорили ж Вам — он на дежурстве, он ждёт! — «Говорили ж бабы Вам, пиво с водкой, не для дам!». Второе-то состояние – неустойчивое! — А тут уж, мил-человек, ничего не попишешь, в конце концов, он — одновибратор. У каждого свои недостатки.

Автоколебательный мультивибратор на ОУ

Автоколебательный мультивибратор или просто мультивибратор называют генератор прямоугольных импульсов. В его основе лежит триггер Шмитта или компаратор с гистерезисом, но в отличие от триггера напряжение в мультивибраторе формируется интегрирующей цепочкой R1C1. Ниже приведена схема мультивибратора на ОУ



Схема автоколебательного мультивибратора на операционном усилителе.

Данный мультивибратор состоит из операционного усилителя DA1, который охвачен положительной обратной связью через резисторы R2R3 и отрицательной обратной связью при помощи интегрирующей цепочки R1C1.

Рассмотрим работу мультивибратора. В основе работы мультивибратора лежит триггер Шмитта, который создается ПОС при помощи резисторов R2R3. Так как опорное напряжение триггера равно нулю, то напряжение верхнего порогового уровня будет равно

а нижнего порога переключения триггера

Таким образом, в момент подачи питания конденсатор полностью разряжен, то есть на инвертирующем входе ОУ напряжение равно нулю. В тоже время на выходе ОУ, вследствие неидеального ОУ, присутствует некоторое положительное напряжение, часть которого через ПОС R2R3 поступает на неинвертирующий вход ОУ. Далее происходит усиление этого напряжения и на выходе ОУ происходит дальнейший рост напряжения.

Напряжение с выхода ОУ поступает также через цепочку R1C1, но вследствие того, что интегрирующая цепочка задерживает сигнал, то рост напряжения на конденсаторе С1, а следовательно и на инвертирующем входе будет происходить медленнее, чем на неинвертирующем. И в результате разность напряжений на инвертирующем и неинвертирующем входе будет расти, а следовательно будет происходить рост выходного напряжения.

В некоторый момент времени напряжение на конденсаторе UC (а также на инвертирующем входе) достигнет напряжения верхнего порогового уровня UВП триггера Шмитта и выходное напряжение UВЫХ скачком станет равным отрицательному напряжению насыщения UНАС-. В результате чего ток через резистор R1 изменится на противоположный, а конденсатор С1 начнёт разряжаться. Разряд конденсатора будет происходить до напряжения нижнего порога переключения UВП триггера. После этого также скачкообразно произойдёт переключение выходного напряжения с отрицательного насыщения к положительному напряжению насыщения UНАС+ триггера Шмитта. Данные переключения иллюстрирует график расположенный ниже



График напряжений в мультивибраторе: на выходе мультивибратора (верхний) и на конденсаторе С1 (нижний).

Частота выходных импульсов мультивибратора зависит от постоянной времени интегрирующей цепочки R1C1, а также от ширины петли гистерезиса и в общем случае определяется следующим выражением

Не трудно заметить, что при

В случае равенства сопротивлений резисторов в цепи ПОС R2 и R3 соотношения будут выглядеть следующим образом

Описание работы одновибратора на логических элементах

Одновибратор состоит из двух логических элементов микросхемы К155ЛА3: первый из них применен в роли 2И-НЕ элемента, второй подключен как инвертор. Подача входного сигнала осуществляется посредством кнопки SA1. Кнопка в данной схеме применяется только в качестве имитации входного сигнала. В действующих же устройствах на данный вход обычно поступает сигнал с каких-либо узлов схемы.

Для наглядности работы одновибратора, к его выходу можно подключить светодиод через токоограничивающий резистор. Чтобы видеть свечение светодиода, нужно чтобы выходной импульс был достаточно продолжительный, поэтому выберем конденсатор емкостью 500 мкф.

Одновибратор на логических элементах К155ЛА3

Одновибратором именуют генератор, вырабатывающий одиночные электрические импульсы. Алгоритм работы одновибратора таков: при поступлении на вход одновибратора электрического сигнала, схема выдает на выходе короткий импульс, продолжительность которого определяется номиналами RC цепи.

После окончания формирования выходного импульса, одновибратор вновь возвращается в свое первоначальное состояние, и процесс повторяется при поступлении нового сигнала на его входе. Поэтому данный одновибратор еще именуют ждущим мультивибратором.

На практике применяется множество разновидностей одновибраторов, таких как одновибратор на транзисторах, операционных усилителях и одновибратор на логических элементах.

Ждущий мультивибратор (одновибратор)

Ждущий мультивибратор в отличие от автоколебательного на выходе формирует одиночный импульс под действием входного сигнала, причём длительность выходного импульса зависит от номиналов элементов обвязки операционного усилителя. Схема ждущего мультивибратора показана ниже

Схема ждущего мультивибратора (одновибратора) на операционном усилителе.

Ждущий мультивибратор состоит из операционного усилителя DA1, цепи ПОС на резисторах R4R5, цепи ООС VD1C2R3 и цепи запуска C1R1VD2.

Цикл работы ждущего мультивибратора можно условно разделить на три части: ждущий режим, переход из ждущего режима в состояние выдержки и непосредственно состояние выдержки. Рассмотрим цикл работы мультивибратора подробнее.

Ждущий режим является основной и наиболее устойчивой частью цикла работы данного типа мультивибратора, так как самопроизвольно он не может перейти в следующие части цикла работы ждущего мультивибратора. В данном состоянии на выходе мультивибратора присутствует положительное напряжение насыщения ОУ (UНАС+), которое через цепь ПОС R4R5 частично поступает на неинвертирующий вход ОУ, тем самым задавая пороговое напряжение переключения мультивибратора (UПП), которое определяется следующим выражением

На инвертирующем входе ОУ присутствует напряжение, которое задаётся диодом VD1 (в случае кремневого диода напряжение примерно равно 0,6 – 0,7 В), то есть меньше порога переключения мультивибратора. При данных условиях ждущий мультивибратор может находиться неограниченно долгое время (до тех пор, пока не поступит запускающий импульс).

Переход из ждущего режима в состояние выдержки, является следующей частью цикла работы ждущего мультивибратора и начинается после того, как на вход поступит импульс отрицательной полярности, амплитуда которого превысит двухкратное значение напряжения переключения ждущего мультивибратора. То есть минимальная амплитуда входного напряжения (UВХ min) должна быть равна

В этом случае напряжение порога переключения ждущего мультивибратора понизится и станет меньше, чем напряжение падения на диоде VD1. Далее произойдёт лавинообразный процесс переключения выходного напряжения и на выходе установится напряжение отрицательного насыщение ОУ (UНАС-) и ждущий мультивибратор перейдёт в состояние выдержки. При выборе номиналов элементов входной цепи C1 и R1 надо исходить из того, что конденсатор С1 должен полностью разрядиться за время действия входного импульса, то есть постоянная времени цепи C1R1 должна быть на порядок (в десять раз) меньше длительности входного импульса.

Заключительная часть цикла работы ждущего мультивибратора является состояние выдержки. В данном состоянии на неинвертирующий вход поступает часть напряжения с выхода мультивибратора, тем самым задавая пороговое напряжение перехода мультивибратора в ждущий режим. В тоже время выходное напряжение через цепь ООС C1R1 поступает на инвертирующий вход и открывает диод VD1, через который начинает разряжаться конденсатор С1. После разряда конденсатора С1 до 0 В происходит его зарядка через резистор R1 до напряжения перехода мультивибратора в ждущий режим. После чего схема переходит в исходное состояние и на выходе устанавливается напряжение положительного насыщения ОУ (UНАС+). Длительность состояния выдержки и непосредственно формируемого выходного импульса определяется временем зарядка конденсатора С1 через резистор R1 и в общем случае определяется следующим выражением

Так как ждущий мультивибратор имеет только одно устойчивое состояние, то за ним закрепилось название одновибратора.

Для того чтобы одновибратор вырабатывал положительные импульсы при положительных управляющих входных сигналах необходимо изменить полярность включения диодов VD1 и VD2.

К155АГ1 (74121)

Микросхема К155АГ1 (74121) это одноканальный ждущий мультивибратор. Он формирует калиброванные импульсы с хорошей стабильностью длительности. Мультивибратор содержит внутреннюю ячейку памяти — триггер с двумя выходами Q и Q. Поскольку о6а выхода имеют наружные выводы (6 и 1 соответственно), разработчик получает от микросхемы парафазный сформированный импульс. Триггер имеет три импульсных входа логического управления,(установки в исходное состояние) через элемент Шмитта. Вход В (активный перепад — положительный) дает прямой запуск триггера, входы Al, А2 — инверсные (активный перепад — отрицательный).

Сигнал сброса, в триггере, формируется с помощью RC-звена: времязадающий конденсатор Сτ подключается между выводами микросхемы 10 и 11, резистор Rτ включается от вывода 11 к положительной шине питания 5 В.

На кристалле микросхемы К155АГ1 (74121)(между выводами 11 и 9) имеется внутренний интегральный резистор Rвн с номиналом примерно 2 кОм. Зависимость длительности выходного импульса τвых от номиналов Rτ и Сτ представлена на диаграмме . Если требуемый номинал Rτ ≤ Rвн можно использовать только внутренний резистор (подать питание 5 В на вывод 9 и подключить Сτ между выводами 10 и 11).

Длительность выходного импульса можно не только определить по диаграмме, но и подсчитатьτвых = CτRτ ln2 ≈ 0,7 Cτ Rτ.

Если Rτ → ∞ и Cτ = 0 (т. е. эти элементы отсутствуют) длительность выходного импульса τвых будет не более 35 нc. Включение этих элементов удобно для генерации импульсов сброса (на цифровой плате дополнительные RC-элементы — инородные детали). Длительность импульса мультивибратора К155АГ1 (74121) мало зависит от температуры и питающего напряжения. Желательно включать RC-фильтр в цепь питания мультивибратора.

В таблице дана сводка сигналов логического управления мультивибратором К155АГ1 (74121). Первые четыре строки здесь показывают зависимость статических выходных уровней Q и Q от логических уровней на входах А1, А2, В (установка триггера в исходное состояние). Нижняя часть таблицы содержит пять условии генерации одного выходного импульса и указывает фазу сигналов на выходах Q и Q. Отклик с длительностью τвых получается при положительном перепаде на входе В или при отрицательном, поданром на вход Al (или А2). На неиспользуемых входы надо подавать сигналы согласно последним пяти строкам таблицы . Вход В можно использовать как разрешающий (с высоким уровнем).

Мультивибратор К155АГ1 (74121) нельзя перезапустить, пока не истекло время τвых . Запущенный мультивибратор нечувствителен ко входным сигналам Al, А2 и В. Входная схема с триггером Шмитта обеспечивает надежный запуск (по входу В) при медленно нарастающем напряжении запуска (например, даже при скорости нарастания фронта запуска 1 В/с). Помехоустойчивость по входам — 1,2, по питанию — 1,5 В.

Длительность выходных импульсов можно менять от ЗО нс до 0,28 с, номиналы резисторов следует выбирать в пределах 2 — 40 кОм, а конденсаторов 10 пф — 10 мкФ.

Диаграммы выходных и запускающих по входам А, В импульсов приведены на рисунке . Здесь для обычного исполнения средний уровень Uср = 1,3 В, для варианта LS уровень Uср = 1,5 В;
условия нагрузки: Сн = 15 пФ, Rн = 400 Ом.

Зарубежным аналогом мультивибратора К155АГ1 является микросхема .

Самая простая (и популярная) схема «цветомузыки» на тиристорах КУ202Н.

Это самая простая и пожалуй, самая популярная схема цветомузыкальной приставки, на тиристорах. Тридцать лет назад я впервые
увидел вблизи полноценную, работающую «светомузыку». Ее собрал мой однокласник, с помощью старшего брата. Это была именно эта схема.
Несомненным ее достоинством является простота, при достаточно явном разделение режимов работы всех трех каналов. Лампы не мигают одновременно,
красный канал низких частот устойчиво моргает в ритм с ударными, средний — зеленый откликается в диапазоне человеческого голоса, высокочастотный синий реагирует на все остальное
тонкое — звенящее и пищащее.

Недостаток один —
необходим предварительный усилитель мощности на 1-2 ватта. Моему товарищу приходилось почти «на полную» врубать свою «Электронику»
для того, что бы добиться достаточно устойчивой работы устройства.
В качестве входного трансформатора был использован понижающий тр-р от радиоточки. Вместо него можно использовать любой малогабаритный понижающий сетевой транс.
Например, с 220 до 12 вольт. Только подключать его нужно наоборот — низковольтной обмоткой на вход усилителя.
Резисторы любые, мощностью от 0,5 ватт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: