Усилитель на КТ315
Для создания усилителя, представленного на схеме, нужен один КТ315, один конденсатор (1 мкФ), один резистор и mini Jack.
На схеме видно, что отрицательное питание и один из двух ходов mini Jack надо припаять к эмиттеру (левая ножка).
Ко второму ходу mini Jack присоединяем “плюсом” конденсатор, а его “минус” припаиваем к базе. Дальше мы переходим к резистору. Одна его сторона должна быть прикреплена к первому колоночному проводу (другой ход колоночного провода — к коллектору), а второй — к отрицательному ходу конденсатора. К соединению провода от колонки и резистора добавляется плюсовой провод.
Теперь можно вставлять разъем в колонку и наслаждаться улучшенным и громким звуком.
Подключение транзисторов для управления мощными компонентами
Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.
Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:
Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.
Обратите внимание на R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:
Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:
здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.
Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА
Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.
Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:
это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.
Маркировка отечественных диодов
Диоды российского производства по-своему маркировались в разные периоды. Стандарт постоянно менялся, до утверждения современной системы было разработано три варианта. По-разному маркировали диоды малой и большой мощности. Сочетаниям букв и цифр соответствуют цветовые символы, согласно таблице.
Маркировка российских диодов
Старая система обозначений
Наименее информативная, с точки зрения современного разнообразия диодов, маркировка применялась до 1964 года. В нее входило всего три элемента:
- буква «Д» – диод полупроводниковый;
- номер, указывающий на особенности устройства диода и его назначение;
- буква, определяющая разновидность (при ее наличии).
Вся полезная информация кодировалась во второй части – серийном номере. Например, номер до 200 означал, что диод точечный, от 200 до 400 – плоскостный; стабилитронам присваивали значение от 801 до 900 и так далее. Ориентироваться в такой системе было сложно.
В 1964 году систему усовершенствовали. В начале кода разместили указание на материал изготовления: 1, 2, 3 или Г, К, А – для германия, кремния и арсенида галлия, соответственно. Следующая буква означала тип прибора:
- варикап – В;
- стабилитрон – С;
- диоды с высокими значениями рабочей частоты – А;
- выпрямители и диодные мосты – Д.
Затем шел серийный номер, но относился он уже к конкретному подклассу. Это позволяло разделить, например, туннельный диод на несколько групп: генераторные (до 299), переключательные (до 399) и обращенные (до 499). При этом у стабилитронов номер указывал на стабилизационное напряжение. Например, 1С273 можно расшифровать так:
- 1 – германиевый;
- С – стабилитрон;
- 273 – малой мощности, напряжение стабилизации – 73 В.
В конце могла стоять буква, означающая разновидность прибора, как и в первом варианте. Такая маркировка была более удобной, однако технологический прогресс и появление новых типов диодов потребовали очередной доработки.
Новая система обозначений
Для современных моделей отечественных диодов используют новый принцип маркировки, основанный на нескольких отраслевых стандартах. Без изменений остались обозначение материала полупроводника и категории диода. Изменения коснулись трехзначного номера, определяющего принцип работы.
Рассматривать его отдельно нельзя, так как для каждого типа диода подразумевают особое разделение по техническим параметрам. Например:
- импульсные диоды – первая цифра означает время восстановления (от менее 1 нс до 500 и более);
- выпрямители – среднее значение прямого тока;
- стабилитроны – разная мощность (от 1 до 3 – менее 0,3 Вт, от 4 до 6 – до 5 Вт) и напряжение стабилизации (менее 10 В, до 100, более 100).
Следующие цифры, в отличие от старой системы, указывают номер разработки – характеристики конкретного диода в них не заложены. Если внутри класса диода есть дальнейшее разделение, после номера идет соответствующая литера.
Важно! В зависимости от назначения диода, в маркировке могут присутствовать дополнительные элементы, например, цифра на бескорпусном устройстве, определяющая особенности конструкции
Корпуса чип-компонентов
Достаточно условно все компоненты поверхностного монтажа можно разбить на группы по количеству выводов и размеру корпуса:
выводы/размер | Очень-очень маленькие | Очень маленькие | Маленькие | Средние |
2 вывода | SOD962 (DSN0603-2), WLCSP2*, SOD882 (DFN1106-2), SOD882D (DFN1106D-2), SOD523, SOD1608 (DFN1608D-2) | SOD323, SOD328 | SOD123F, SOD123W | SOD128 |
3 вывода | SOT883B (DFN1006B-3), SOT883, SOT663, SOT416 | SOT323, SOT1061 (DFN2020-3) | SOT23 | SOT89, DPAK (TO-252), D2PAK (TO-263), D3PAK (TO-268) |
4-5 выводов | WLCSP4*, SOT1194, WLCSP5*, SOT665 | SOT353 | SOT143B, SOT753 | SOT223, POWER-SO8 |
6-8 выводов | SOT1202, SOT891, SOT886, SOT666, WLCSP6* | SOT363, SOT1220 (DFN2020MD-6), SOT1118 (DFN2020-6) | SOT457, SOT505 | SOT873-1 (DFN3333-8), SOT96 |
> 8 выводов | WLCSP9*, SOT1157 (DFN17-12-8), SOT983 (DFN1714U-8) | WLCSP16*, SOT1178 (DFN2110-9), WLCSP24* | SOT1176 (DFN2510A-10), SOT1158 (DFN2512-12), SOT1156 (DFN2521-12) | SOT552, SOT617 (DFN5050-32), SOT510 |
Конечно, корпуса в таблице указаны далеко не все, так как реальная промышленность выпускает компоненты в новых корпусах быстрее, чем органы стандартизации поспевают за ними.
Корпуса SMD-компонентов могут быть как с выводами, так и без них. Если выводов нет, то на корпусе есть контактные площадки либо небольшие шарики припоя (BGA). Также в зависимости от фирмы-производителя детали могут могут различаться маркировкой и габаритами. Например, у конденсаторов может различаться высота.
Большинство корпусов SMD-компонентов предназначены для монтажа с помощью специального оборудования, которое радиолюбители не имеют и врядли когда-нибудь будет иметь. Связано это с технологией пайки таких компонентов. Конечно, при определённом упорстве и фанатизме можно и в домашних условиях паять BGA-микросхемы.
Типы корпусов SMD по названиям
Название | Расшифровка | кол-во выводов |
SOT | small outline transistor | 3 |
SOD | small outline diode | 2 |
SOIC | small outline integrated circuit | >4, в две линии по бокам |
TSOP | thin outline package (тонкий SOIC) | >4, в две линии по бокам |
SSOP | усаженый SOIC | >4, в две линии по бокам |
TSSOP | тонкий усаженный SOIC | >4, в две линии по бокам |
QSOP | SOIC четвертного размера | >4, в две линии по бокам |
VSOP | QSOP ещё меньшего размера | >4, в две линии по бокам |
PLCC | ИС в пластиковом корпусе с выводами, загнутыми под корпус с виде буквы J | >4, в четыре линии по бокам |
CLCC | ИС в керамическом корпусе с выводами, загнутыми под корпус с виде буквы J | >4, в четыре линии по бокам |
QFP | квадратный плоский корпус | >4, в четыре линии по бокам |
LQFP | низкопрофильный QFP | >4, в четыре линии по бокам |
PQFP | пластиковый QFP | >4, в четыре линии по бокам |
CQFP | керамический QFP | >4, в четыре линии по бокам |
TQFP | тоньше QFP | >4, в четыре линии по бокам |
PQFN | силовой QFP без выводов с площадкой под радиатор | >4, в четыре линии по бокам |
BGA | Ball grid array. Массив шариков вместо выводов | массив выводов |
LFBGA | низкопрофильный FBGA | массив выводов |
CGA | корпус с входными и выходными выводами из тугоплавкого припоя | массив выводов |
CCGA | СGA в керамическом корпусе | массив выводов |
μBGA | микро BGA | массив выводов |
FCBGA | Flip-chip ball grid array. Массив шариков на подложке, к которой припаян кристалл с теплоотводом | массив выводов |
LLP | безвыводной корпус |
Из всего этого зоопарка чип-компонентов для применения в любительских целях могут сгодиться: чип-резисторы, чип-конденсаторы , чип-индуктивности, чип-диоды и транзисторы, светодиоды, стабилитроны, некоторые микросхемы в SOIC корпусах. Конденсаторы обычно выглядят как простые параллелипипеды или маленькие бочонки. Бочонки — это электролитические, а параллелипипеды скорей всего будут танталовыми или керамическими конденсаторами.
Как отличить стабилизационный диод от обычного полупроводника
Очень часто люди задаются вопросом, как можно отличить стабилитрон от стандартного полупроводника, ведь, как мы выяснили раньше, оба этих элемента имеют практически идентичное обозначение на электросхеме и могут выполнять схожие функции. Самым простым способом отличить стабилизационный полупроводник от обычного является использование схемы приставки к мультиметру. С его помощью можно не только отличить оба элемента друг от друга, но и выявить напряжение стабилизации, которое характерно для данного смд (если оно, конечно, не превышает 35В). Схема приставки мультиметра является DC-DC преобразователем, в которой между входом и выходом имеется гальваническая развязка. Эта схема имеет следующий вид:
Схема приставки мультиметра
В ней генератор с широтно-импульсной модуляцией выполняется на специальной микросхеме МС34063, а для создания гальванической развязки между измерительной частью схемы и источником питания контрольное напряжение следует снимать с первичной обмотки трансформатора. Для этой цели имеется выпрямитель на VD2. При этом величина для выходного напряжения или тока стабилизации устанавливается путем подбора резистора R3. На конденсаторе С4 происходит выделение напряжения примерно в 40В. При этом проверяемый смд VDX и стабилизатор для тока А2 будут формировать параметрический стабилизатор. Мультиметр, который подключили к выводам Х1 и Х2, будет измерять на данном стабилитроне напряжение. При подключении катода к «-«, а анода к «+» диода, а также к несимметричному смд мультиметра, последний покажет незначительное напряжение. Если подключать в обратной полярности (как на схеме), то в ситуации с обычным полупроводником прибор будет регистрировать напряжение около 40В.
Здесь трансформатор Т1 будет намотан на торообразном ферритовом сердечнике с внешним диаметром в 23 мм. Такая обмотка 1 будет содержать 20 витков, а вторая обмотка — 35 витков провода ПЭВ 0,43
При этом важно при намотке укладывать виток к витку. Следует помнить, что первичная обмотка идет на одной части кольца, а вторая – на другой. Проводя настройку прибора, подключите резистор вместо smd VDX
Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4 Вот так можно выяснить, стабилитрон у вас или обычный диод
Проводя настройку прибора, подключите резистор вместо smd VDX. Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4 Вот так можно выяснить, стабилитрон у вас или обычный диод.
Диоды иностранных производителей
Похожий принцип с некоторыми отличиями используется в системе маркировки диодов импортного образца. Отличают три стандарта:
- JEDEC – американский. Каждый диод представлен в виде набора обозначений в виде 1NXY, где X – это серийный номер, а Y – модификация. Первые два символа есть у всех приборов, поэтому в цветовой маркировке их не учитывают. Каждой цифре или литере соответствует свой цвет, согласно таблице.
- PRO-ELECTRON – европейский. Две буквы в начале – материал и подкатегория диода. Серийный номер может иметь вид значения от 100 до 999 (бытовые приборы) либо с добавлением литер (Z10-A99), подразумевающих промышленное применение. Каждое из значений кодируется в цветовой элемент.
- JIS – японский. Заметно отличается от предыдущих – в начале указывается функциональный тип: фотодиод, обычный диод, транзистор или тиристор. Затем идет S – обозначение полупроводника; следующая литера – тип прибора внутри категории, затем серийный номер и буква модификации (одна или две).
Цветовая маркировка по зарубежным системам
Запомнить все сочетания практически невозможно. Если усвоить хотя бы основные соответствия, разобраться в назначении диода удастся гораздо быстрее.
Особенность SMD-диодов, монтирующихся прямо на поверхность плат, – невозможность полноценной маркировки из-за небольших размеров. Отсюда – своеобразная система идентификации. Несколько способов различить такие диоды:
Обратить внимание на форму исполнения корпуса. У каждого типа есть характерный внешний вид, например, электролитические конденсаторы цилиндрические, керамические – в форме параллелепипеда.
Свериться с таблицей типоразмеров
Обычно это четыре цифры, которые обозначают габариты резистора в дюймах.
Для каждого типа корпуса и назначения предусмотрена своя система обозначений, что делает расшифровку неудобной.
SMD-диоды – маркировка отличается в зависимости от корпуса
Малый размер также не позволяет разместить привычные различимые обозначения полярностей. При определении катода руководствуются следующим:
- маркировка в виде цветных колец наносится на его сторону;
- некоторые корпуса без цветовых символов имеют паз на стороне катода;
- если на корпусе изображен треугольник, его вершина указывает на отрицательный полюс.
Это помогает избежать путаницы. Чаще всего во всех системах маркировки символы наносят на сторону катода, это справедливо и для SMD-элементов.
В идентификации светодиодов сложностей меньше. Каждый тип обладает характерными внешними отличительными признаками. Различают две категории:
- Цвет SMD-светодиода. В свою очередь, делят на группы по излучению: многоцветные диоды, нейтральный, теплый и холодный белый.
- Размер элемента. По аналогии с зарубежной кодировкой используют 4 цифры, которые обозначают размер в миллиметрах. 3014 – размер 3 х 1.4 мм.
Число перед типом светодиода означает количество на 1 метр ленты. Для устройств с длинными выводами, заключенными в пластмассовый или стеклянный корпус, применяют систему цветовых элементов, ознакомиться с которой можно в таблице.
Пример цветовой маркировки светодиодов
Кодовая маркировка транзисторов
Для облегчения определения типа транзистора, имеющего на своем корпусе цветовую маркировку, можно использовать следующую несложную программу «Транзистор»:
Тестер транзисторов / ESR-метр / генератор
МАРКИРОВКА ПОЛЕВЫХ ТРАНЗИСТОРОВ
— Тип транзистора Группа
-Код типа (КПЗОЗ) Г*»*}» изготовления
-Дата изготовления — Заводской знак
КПЙ5 Га ;-Группа
Заводской знак Qg I-дата изготовления
. Дата изготовления
Маркировка типа и группы (цветные точки) — Заводокой знак
-Дата изготовления -Заводской знак
7.3.2. ЦВЕТОВАЯ МАРКИРОВКА
Полная и сокращенная цветовая маркировка транзисторов малой и средней мощности, изготовленных в корпусах КТ-29 (SOT-37), КТ-26 (ТО-92), выполняется путем нанесения точек различных цветов (см. цветные вкладки 23 и 24).
При полной цветовой (точечной) маркировке на корпус транзистора наносится тип, группа, дата выпуска. При сокращенной маркировке дату выпуска опускают, указывая ее только на вкладыше упаковки.
В приведенных ниже табл. 7.3.2 отражены отличия в цветовой маркировке СВЧ транзисторов различных типов, применяемых в селекторах каналов и антенных усилителях.
Таблица 7.3.2а. Маркировка ВЧ и СВЧ биполярных транзисторов
Продолжение табл. 7.3.2а
В таблице приняты такие обозначения параметров транзисторов:
Iкэо — обратный ток коллектор-эмиттер, в числителе, при напряжении К-Э в знаменателе. Iэбо — обратный ток эмиттера (эмиттер-база) в числителе, при напряжении между эмиттером и базой в знаменателе. h21э — статический коэффициент передачи тока. Fгр — верхняя граничная частота. Ск — емкость коллекторного перехода. Uкэ max — максимальное напряжение между коллектором и эмиттером. Uэб max — максимальное напряжение между эмиттером и базой. Iк max — максимальный ток коллектора. Iк имп. — максимальный импульсный ток коллектора. Iб max — максимальный ток базы. Рmax — максимальная мощность на коллекторе без теплоотвода. Рт max — максимальная мощность на коллекторе с теплоотводом. н/д — нет данных.
Символьно — цветовая маркировка транзисторов
Отличительная особенность данной маркировки – отсутствие цифр и букв. Типономинал транзистора обозначается на срезе боковой поверхности специальными символом (точки, горизонтальные, вертикальные или пунктирные линии) или цветной геометрической фигурой (круг, полукруг, квадрат, треугольник, ромб и др.). Маркировка группы относится одной (несколькими) точками на торце корпуса (КТ-26, КТП-4).
Цветовая гамма точек, обозначающих группу при данной маркировке, не совпадает со стандартной цветовой гаммой по ГОСТ 24709-81. Она определяется производителем.
Символ круга на боковом срезе транзистора необходимо отличать от точки, которая не имеет четкой формы, т.к. наносится кистью.
Ряд зарубежных фирм использует цветовую маркировку для обозначения коэффициента усиления радиочастотных транзисторов. В таблице показана цветовая маркировка радиочастотных транзисторов фирмы MOTOROLLA. Возможно либо нанесение буквенного кода, либо цветной точки.
Пожалуй, нет какого-то более или менее сложного электронного устройства, произведенного в СССР на протяжении семидесятых, восьмидесятых и девяностых годов, в схеме которого не использовался бы транзистор КТ315. Не утратил популярности он и поныне.
В обозначении использована буква К, означающая «кремниевый», как и большинство полупроводниковых приборов, изготавливаемых с тех времен. Цифра «3» означает, что транзистор КТ315 относится к группе широкополосных приборов небольшой мощности.
Пластиковый корпус не предполагал высокой мощности, но был дешев.
Выпускался транзистор КТ315 в двух вариантах, плоском (оранжевый или желтый) и цилиндрическом (черный).
Для того чтобы удобнее было определять, как его монтировать, на его «лицевой» стороне в плоской версии выполнен скос, коллектор — в середине, база — слева, коллектор — справа.
Черный транзистор имел плоский срез, если расположить транзистор им к себе, то эмиттер оказывался справа, коллектор — слева, а база — посередине.
Маркировка состояла из буквы, в зависимости от допустимого напряжения питания, от 15 до 60 Вольт. От литеры зависит и мощность, она может достигать 150 мВт, и это при микроскопических по тем временам размерах — ширина — семь, высота — шесть, а толщина — менее трех миллиметров.
Транзистор КТ315 — высокочастотный, этим объясняется широта его применения. до 250 мГц гарантирует его устойчивую работу в радиосхемах приемников и передатчиков, а также усилителях диапазона.
Проводимость — обратная, n-p-n. Для пары при использовании двухтактной схемы усиления создан КТ361, с прямой проводимостью. Внешне эти «близнецы-братья» практически не отличаются, только наличие двух черных рисок указывает на p-n-p проводимость. Еще вариант маркировки, буква расположена точно посередине корпуса, а не с краю.
При всех своих достоинствах, транзистор КТ315 обладает и недостатком
Его выводы плоские, тонкие, и очень легко отламываются, поэтому монтаж следует производить очень осторожно. Впрочем, даже испортив деталь, многие радиолюбители умудрялись починить ее, подпилив немного корпус, и «присоплив» проволочку, хотя это и трудно, да и смысла особого не было
Корпус настолько своеобразен, что точно указывает на советское происхождение КТ315. Аналог ему найти можно, например, ВС546В или 2N9014 — из импорта, КТ503, КТ342 или КТ3102 — из наших транзисторов, но рекордная дешевизна лишает смысла такие ухищрения.
Выпущены миллиарды КТ315, и, хотя в наше время существуют микросхемы, в которых встроены десятки и сотни таких полупроводниковых приборов, иногда их все же используют для сборки несложных вспомогательных схем.
Цветовая маркировка диодов
- Типы диодов
- Маркировка отечественных диодов
- Диоды иностранных производителей
- SMD-диоды
- Маркировка светодиодов
- Индекс цветопередачи CRI
- Видео
Несмотря на простой принцип устройства диода, существует множество разновидностей этого прибора. Различать их помогают метки на корпусе – цветовая маркировка диодов. Она позволяет определить нужный прибор при покупке, а также правильно подключить его в схему. Однако большое количество категорий диодов и несколько систем условных обозначений могут легко ввести в заблуждение.
Диоды с цветовыми символами на корпусе
Основное разделение диодов происходит по их виду. Различают три категории: материал изготовления, площадь p-n перехода и назначение.
Для производства диодов используют один из четырех исходных полупроводников:
- германий – в маломощных и прецизионных цепях, имеет больший коэффициент передачи;
- кремний – недорогие и долговечные, устойчивы к воздействию температуры, но обладают меньшей проводимостью;
- арсенид галлия – дороже и сложнее кремниевых, высокая радиационная стойкость;
- фосфид индия – в светодиодах и для работы на сверхвысоких частотах.
Каждому материалу в разных системах соответствует своя буква или цифра, которую указывают в начале.
Есть два варианта конструкционного размещения катода и анода:
- Точечный диод. Один из электродов в виде узкой иглы вплавляется в кристалл, образуя p-n границу. Она имеет малую площадь, как следствие – высокая рабочая частота. Они почти вышли из применения по причине низкой прочности, уязвимости к перегрузкам и низкому максимальному току.
- Плоскостный диод. Область перехода больше – контакт проходит по площади пластинки полупроводника, соединяемой с кристаллом. Отличаются большей емкостью, низким уровнем помех, малым падением напряжения. Пример – диод Шоттки.
В современной маркировке разделение практически не встречается – плоскостные диоды постепенно вытесняют точечные.
Следующее обозначение зависит от назначения прибора. Существует классификация диодов, применяемых в разных областях: туннельные, лазерные, варикапы, стабилитроны. Внутри подтипа также есть разделение – уже по техническим параметрам:
- рабочая частота;
- время восстановления;
- прямой и обратный ток;
- допустимые значения обратного и прямого напряжения;
- температурный режим.
Получается большое количество возможных сочетаний, отсюда – сложность создания единой системы маркировки.
Индекс цветопередачи CRI
Один из неочевидных параметров в кодировке – значение CRI, определяющее, насколько естественным выглядит свечение. Средний параметр равен 100 – это солнечный свет; меньшее значение применимо к источникам искусственного света. Соответственно, чем выше CRI, тем лучше.
Помимо определения нужного типа прибора в магазине, цветовую маркировку можно использовать в практических целях. Например, зная расположение и цвет элементов, можно рассчитать сопротивление резистора. Для этого достаточно занести данные в форму онлайн калькулятора. Понимание систем маркировки облегчает правильное использованию диодов и решает множество проблем, связанных с выбором нужного типа устройства.
Модификации и маркировка транзистора S8050
Модель | PC | UCB | UCE | UBE | IC | TJ | fT | Cob | hFE | Корпус | Маркировка |
S8050A | 0,625 | 40 | 25 | 6 | 0,8 | 150 | 100 | 9 | 85 | TO-92 | — |
GS8050T | 0,625 | 40 | 25 | 6 | 0,8 | 150 | 100 | 9 | 45 | TO-92 | — |
GSTSS8050 | 1 | 40 | 25 | 5 | 1,5 | 150 | 100 | — | 85 | TO-92 | — |
MPS8050 | 0,625 | 40 | 25 | 6 | 1,5 | 150 | 190 | 9 | 85 | TO-92 | — |
S8050A/B/C/D/G | 0,625 | 40 | 25 | 6 | 0,8/0,5 | 150 | 100/150 | 9 | 85…300 | TO-92 | — |
S8050T | 0,625 | 40 | 25 | 6 | 0,5 | 150 | 150 | — | 85 | TO-92 | — |
SPS8050 | 0,625 | 15 | 12 | 6,5 | 1,5 | 150 | 260 | 5 | 200 | TO-92 | — |
SS8050/C/D/G | 1 | 40 | 25 | 5 | 1,5 | 150 | 100 | — | 85…400 | TO-92 | — |
SS8050T | 1 | 40 | 25 | 5 | 1,5 | 150 | 100 | — | 85 | TO-92 | — |
STS8050 | 0,625 | 30 | 25 | 6 | 0,8 | 150 | 120 | 19 | 85 | TO-92 | — |
Транзисторы исполнения SMD и их маркировка | |||||||||||
MMSS8050W-H/J/L | 0,2 | 40 | 25 | 5 | 1,5 | 150 | 100 | 15 | 120…400 | SOT-323 | Y1 |
S8050W | 0,25 | 40 | 25 | 6 | 0,8 | 150 | 100 | 9 | 85 | SOT-323 | Y1 |
SS8050W | 0,2 | 40 | 25 | 5 | 1,5 | 150 | 100 | — | 120 | SOT-323 | Y1 |
GSTSS8050LT1 | 0,225 | 40 | 25 | 5 | 1,5 | 150 | 100 | — | 100 | SOT-23 | 1HA |
MMSS8050-L/H | 0,3 | 40 | 25 | 5 | 0,5 | 150 | 150 | — | 120…350 | SOT-23 | Y1 |
MPS8050S | 0,35 | 40 | 25 | 6 | 1,5 | 150 | 190 | — | 85 | SOT-23 | — |
MPS8050SC | 0,35 | 40 | 25 | 5 | 1,2 | 150 | 150 | — | 85…300 | SOT-23 | — |
MS8050-H/L | 0,2 | 40 | 25 | 6 | 0,8 | 150 | 150 | — | 80…300 | SOT-23 | Y11 |
S8050 | 0,3 | 40 | 25 | 5 | 0,5 | 150 | 150 | — | 120 | SOT-23 | — |
S8050M-/B/C/D | 0,45 | 40 | 25 | 6 | 0,8 | 150 | 100 | 9 | 85…300 | SOT-23 | HY3B/C/D |
SS8050LT1 | 0,225 | 40 | 25 | 5 | 1,5 | 150 | 150 | — | 120 | SOT-23 | KEY |
KST8050D | 0,25 | 50 | 50 | 6 | 1,2 | 150 | 100 | — | 100…320 | SOT-23 | Y1C, Y1D |
KST8050M | 0,3 | 40 | 25 | 6 | 0,8 | 150 | 150 | — | 40…400 | SOT-23 | Y11 |
KST8050X | 0,3 | 40 | 20 | 5 | 1,5 | 150 | 100 | 20 | 40…350 | SOT-23 | Y1+ |
KST9013 | 0,3 | 40 | 25 | 5 | 0,5 | 150 | 150 | — | 200…400 | SOT-23 | J3 |
KST9013C | 0,3 | 40 | 25 | 5 | 0,5 | 150 | 150 | — | 40…200 | SOT-23 | J3Y |
S8050LT1 | 0,3 | 40 | 25 | 5 | 0,5 | 150 | 150 | — | 120 | SOT-23 | J3Y |
MMS8050-L/H | 0,3 | 40 | 25 | 5 | 0,5 | 150 | 150 | — | 50…350 | SOT-23 | J3Y |
DMBT8050 | 0,3 | 40 | 25 | 5 | 0,8 | 150 | 100 | — | 120 | SOT-23 | J3Y |
KST8050S | 0,3 | 40 | 25 | 5 | 0,5 | 150 | 150 | — | 50…400 | SOT-23 | J3Y |
KTD1304S | 0,2 | 25 | 20 | 12 | 0,3 | 150 | 50 | 10 | 20…800 | SOT-23 | J3Y |
KTD1304 | 0,2 | 25 | 20 | 12 | 0,3 | 150 | 60 | — | 20…1000 | SOT-23 | J3Y или MAX |
Миниатюрные размеры SMD-корпусов (SOT-23, SOT-323) не позволяют производителю использовать традиционные способы маркировки продукции. Поэтому обычно применяется 2-4 символьный буквенно-цифровой код, наносимый на лицевую поверхность корпуса. Какая-либо единая система среди производителей отсутствует. Кроме того, некоторые предприятия используют одинаковые обозначения, не позволяющие однозначно идентифицировать производителя. Во многих случаях отличающиеся одним символом коды используются и для обозначения групп одного и того же изделия в разных диапазонах значений параметра hFE.
Наиболее часто встречающийся маркировочный код “J3Y” соответствует транзисторам S8050 компаний-, «KEXIN», «SECOS», «Jin Yu Semiconductor», «LGE», «WEITRON», «MCC», «GLOBALTECH Semiconductor», «Shenzhen Tuofeng Semiconductor Technologies».
Транзистор КТ829 — DataSheet
Цоколевка транзистора КТ829 |
Цоколевка транзистора КТ829(Т-М) |
Описание
Транзисторы кремниевые мезапланарные составные универсальные низкочастотные мощные. Предназначены для работы в усилителях низкой частоты, ключевых схемах. Выпускаются в пластмассовом корпусе с жесткими выводами. Обозначение типа приводится на корпусе. Масса транзистора не более 2 г.
Параметр | Обозначение | Маркировка | Условия | Значение |
Ед. изм. |
Аналог | КТ829А | BD267B, TIP122, BD901, BDW23C *2, BDW73C, BDW63C *2, 2SD1128 *2, 2SD1740 *2, BD267A *2 | |||
КТ829Б |
BD267A, BD263, TIP121,
BD899A, BD899, BDW23B *2, BDW73B *2, BD267 *2 |
||||
КТ829В |
BD331, TIP120, BD897A,
BD897, BDW23A, ТIР120 *2 |
||||
КТ829Г |
BD665, BD675, BD895A,
BD895, BDW23, BDW73, BDW63 *2, BD695 *1 |
||||
Структура | — | n-p-n | |||
Максимально допустимая постоянная рассеиваемая мощность коллектора | PK max,P*K, τ max,P**K, и max | КТ829А | — | 60* | Вт |
КТ829Б | — | 60* | |||
КТ829В | — | 60* |
КТ829Г
—
60*
КТ829АТ
—
50
КТ829АП
—
50
КТ829АМ
—
60
Граничная частота коэффициента передачи тока транзистора для схемы с общим эмиттером
fгр, f*h31б, f**h31э, f***max
КТ829А
—
≥4
МГц
КТ829Б
—
≥4
КТ829В
—
≥4
КТ829Г
—
≥4
КТ829АТ
—
≥4
КТ829АП
—
≥4
КТ829АМ
—
≥4
Пробивное напряжение коллектор-база при заданном обратном токе коллектора и разомкнутой цепи эмиттера
UКБО проб., U*КЭR проб., U**КЭО проб.
КТ829А
1к
100*
В
КТ829Б
1к
80*
КТ829В
1к
60*
КТ829Г
1к
45*
КТ829АТ
—
100
КТ829АП
—
160
КТ829АМ
—
240
Пробивное напряжение эмиттер-база при заданном обратном токе эмиттера и разомкнутой цепи коллектора
UЭБО проб.,
КТ829А
—5
В
КТ829Б
—5
КТ829В
—5
КТ829Г
—5
КТ829АТ
—5
КТ829АП
—
5
КТ829АМ
—
5
Максимально допустимый постоянный ток коллектора
IK max, I*К , и max
КТ829А
—
8(12*)
А
КТ829Б
—
8(12*)
КТ829В
—
8(12*)
КТ829Г
—
8(12*)
КТ829АТ
—
5
КТ829АП
—
5
КТ829АМ
—
8
Обратный ток коллектора — ток через коллекторный переход при заданном обратном напряжении коллектор-база и разомкнутом выводе эмиттера
IКБО, I*КЭR, I**КЭO
КТ829А
100 В
≤1.5*
мА
КТ829Б
80 В
≤1.5*
КТ829В
60 В
≤1.5*
КТ829Г
60 В
≤1.5*
КТ829АТ
—
—
КТ829АП
—
—
КТ829АМ
—
—
Статический коэффициент передачи тока транзистора в режиме малого сигнала для схем с общим эмиттером
h21э, h*21Э
КТ829А
3 В; 3 А
≥750*
КТ829Б
3 В; 3 А
≥750*
КТ829В
3 В; 3 А
≥750*
КТ829Г
3 В; 3 А
≥750*
КТ829АТ
—
≥1000
КТ829АП
—
≥700
КТ829АМ
—
400…3000
Емкость коллекторного перехода
cк, с*12э
КТ829А
—
≤120
пФ
КТ829Б
—
≤120
КТ829В
—
≤120
КТ829Г
—
≤120
КТ829АТ
—
—
КТ829АП
—
—
КТ829АМ
—
—
Сопротивление насыщения между коллектором и эмиттером
rКЭ нас, r*БЭ нас, К**у.р.
КТ829А
—
≤0.57
Ом, дБ
КТ829Б
—
≤0.57
КТ829В
—
≤0.57
КТ829Г
—
≤0.57
КТ829АТ
—
≤0.3
КТ829АП
—
≤0.25
КТ829АМ
—
≤0.66
Коэффициент шума транзистора
Кш, r*b, P**вых
КТ829А
—
—
Дб, Ом, Вт
КТ829Б
—
—
КТ829В
—
—
КТ829Г
—
—
КТ829АТ
—
—
КТ829АП
—
—
КТ829АМ
—
—
Постоянная времени цепи обратной связи на высокой частоте
τк, t*рас, t**выкл, t***пк(нс)
КТ829А
——
пс
КТ829Б
——
КТ829В
——
КТ829Г
——
КТ829АТ
——
КТ829АП
——
КТ829АМ
——
Описание значений со звездочками(*,**,***) смотрите в таблице параметров биполярных транзисторов.
*1 — аналог по электрическим параметрам, тип корпуса отличается.
*2 — функциональная замена, тип корпуса аналогичен.
*3 — функциональная замена, тип корпуса отличается.
Входные характеристики |
Зависимость статического коэффициента передачи тока от тока коллектора |
Зависимость напряжения насыщения коллектор — эмиттер от Iк/Iб |
Зависимость максимально допустимого напряжения коллектор-эмиттер от сопротивления база-эмиттер |
Зависимость максимально допустимой мощности рассеивания коллектора от температуры корпуса |
Область максимальных режимов |
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Маркировка транзисторов по американской системе JEDEC
Первый символ в маркировке транзистора обозначает количество p-n-переходов. Второй символ указывает типономинал электронного компонента. Следующая последовательность цифр — это серийный номер устройства. Буква, стоящая за серийным номером, характеризует возможные отклонения от характеристик по EIA. В некоторых случаях, когда корпус транзистора чересчур мал и не позволяет нанести весь маркировочный код полностью, используется его сокращённая версия без буквы «N» в начале и без предшествующей ей цифре.
Надеемся, вышеизложенная информация поможет вам разобраться в многообразии маркировок, и вы сможете с легкостью выбрать и купить транзисторы, а также другие электронные компоненты с подходящими характеристиками.
Разновидности и характеристики
Существует достаточно большое количество различных вариантов данного прибора, отличающихся друг от друга теми или иными показателями. Для рассмотрения всех вариантов прибора, введём следующие параметры КТ3102 :
- Максимальный допустимый ток на коллекторе( I K MAX ) – 0,1 A .
- Максимальный импульсный ток на коллекторе( I K I MAX ) – 0,2 A .
- Максимальная мощность коллектора( P K MAX ) – 0,25 B т. ( Данное значение мощности подсчитано без использования радиатора)
- Максимальная частота при подключении по схеме с общим эмиттером ( f гр ) – 150МГц.
Вышеперечисленные характеристики КТ3102 одинаковы для всех моделей прибора. То есть, при любой маркировке прибора, вы должны учитывать вышеперечисленные значения. Описанные ниже показатели будут отличаться в зависимости от типа элемента. В последующем приведём краткую сводку параметров для каждого типа.
- U КБ – максимальная разность потенциалов системы коллектор-база.
- U КЭ – максимальная разность потенциалов системы коллектор-эмиттер.
- H 21э – коэффициент усиления при подключении с общим эмиттером.
- I КБ – обратный ток коллектора.
- К Ш – коэффициент шума.
Для удобства, все показатели будут вынесены в таблицу. Буква М и её отсутствие в обозначении пары транзисторов (например, КТ3102А и КТ3102АМ) означает тип корпуса. С буквой М – пластиковый корпус. Без неё – металлический. Показатели не зависят от типа корпуса. В таблице, также, будут приведены зарубежные аналоги КТ3102.
Историческая справка
Созданию первого транзистора по планарной технологии способствовали знания и опыт, полученные СССР при разработке интегральных микросхем. Их разработка в 60-е годы велась в НИИ «Пульсар», НИИ-35 и различных опытно-конструкторских бюро на предприятиях советской промышленности. В 1962 году в НИИ «Пульсар» перешли на планарную кремневую технологию, которая в последующем дала жизнь КТ315.
Небольшой временной период от разработки до серийного выпуска этого устройства, позволяет судить о высоком уровне развития электронной промышленности СССР в те времена. Судите сами, на сколько быстро и оперативно это было сделано. В 1966 г. министр энергетической промышленности Шокин А.И. узнал о появлении в США технологии промышленного изготовления транзисторов по планарной технологии. Уже в 1967 г. Фрязинский завод полупроводниковых приборов так же начинает выпускать первый в СССР высокочастотник в пластиковом корпусе, по аналогичной технологии – КТ315.
В 1968 г. начался выпуск первого электронного калькулятора — «Электроника-68», в котором насчитывалось около 400 транзисторов данного вида. А к 1973 он стал основой для разработки более 20 подобных полупроводниковых устройств. Примерно до начала 90-х годов КТ315 оснащалась почти вся отечественная электроника, так как, несмотря на свою дешевизну, он получился весьма надежным и технологичным. В настоящее время, в мире насчитывается более 7 миллиардов этих транзисторов. Они были выпущены не только в нашей стране, но и за рубежом по государственной лицензии от СССР.
Советуем Вам проверить информацию о содержании драгоценных металлов в КТ315, так как некоторые модели могут иметь ценность даже в нерабочем состоянии, особенно продукция старого образца.