Истоки и первооткрыватели, история электрического освещения

История освещения – от древнего огня до современных светодиодов

Общие определения

С точки зрения оптики, свет – это электромагнитное излучение, которое воспринимается глазом человека. За единицу изменения принято брать участок в вакууме 750 ТГц. Это коротковолновая граница спектра. Ее длина равна 400 нм. Что касается границы широких волн, то за единицу измерения берется участок в 760 нм, то есть 390 ТГц.

В физике свет рассматривается как совокупность направленных частиц, называемых фотонами. Скорость распределения волн в вакууме постоянна. Фотоны обладают определенным импульсом, энергией, нулевой массой. В более широком смысле слова, свет – это видимое ультрафиолетовое излучение. Также волны могут быть и инфракрасными.


С точки зрения онтологии, свет – это начало бытия. Об этом твердят и философы, и религиоведы. В географии этим термином принято называть отдельные области планеты. Сам по себе свет — это понятие социальное. Тем не менее в науке оно имеет конкретные свойства, черты и законы.

Освещение коридора

Рассмотрим несколько вариантов. Допустим, у нас есть широкий просторный холл с шириной не меньше 1,5 метров с консольным столиком для ключей или банкеткой. Для такого помещения подойдет центральное освещение с люстрой или накладным светильником. На стенах можно сделать бра. Располагайте их, например, над столиком или у зеркала. Высота установки бра может варьироваться от 1,6 до 1,8 м. над уровнем пола.

Если Ваш холл узкий и длинный, лучшим вариантом будет использование встроенных или накладных акцентных светильников.

В минималистичном интерьере будут уместны встраиваемые светильники. Это могут быть как точечные светильники, так и линейные.

Этапы развития ламп накаливания

После патентования Т. Эдисоном долгоработающей лампы многие предприниматели принялись совершенствовать продукцию, чтобы обеспечить рынок конкурентоспособным товаром. Пик такого развития пришелся на период между 1890 и 1920 гг.

Первые образцы-подобия ламп, работающих от электричества, оснащались платиновыми нитями, а затем появились угольные виды. Но все они быстро сгорали. В 1904 г. стал популярен вольфрамовый вариант. Тогда использовали три метода работы с этим материалом для создания эффективных ламп.

Ее прокаливали в условия вакуума, кадмий и другие компоненты испарялись и оставалась чистая вольфрамовая нить. Именно эта технология была наиболее простой и давала хороший результат. Иные методы были либо слишком сложными, либо не обеспечивали чистоту нити для устройства накаливания.

Привычные приборы для освещения имеют простую конструкцию, но ее изобретение и совершенствование заняло много лет опытов и трудов. Этой теме посвящены различные научные статьи и другие материалы, которые могут напомнить историю создания. Именно лампы накаливания дали старт для быстрого развития этой сферы. Благодаря этому люди могут жить с комфортом.

Самое начало, лампа накаливания

История электрического освещения началась еще задолго до того, как Томас Эдисон сначала в 1879, а потом еще раз через год в 1880 запатентовал свою лампу накаливания и начал ее популяризировать английские изобретатели показывали, что электрический свет можно получить с помощью дуговой лампы. Первый электрический свет люди увидели в 1835 году. После того еще целых 40 лет ученые со всего мира работали над усовершенствованием лампы накаливания и перебирали различные нити (часть лампы, которая при прохождении через нее электрического тока накаляется и производит свет) и атмосферы лампы (нужно ли использовать вакуум или заполнить лампу инертным газом, чтобы нить не перегорала так быстро).

Эти первые лампы накаливания имели очень короткий срок жизни, были слишком дороги, чтобы наладить их массовое производство, а также потребляли много энергии.

Когда Эдисон и его последователи из Менло-Парк начали заниматься вопросом искусственного освещения, они сосредоточились на усовершенствовании самой нити накаливания. Они пытались выбрать наилучший материал, первым был углерод, затем платина, затем исследователи опять вернулись к углероду. К концу октября 1879 года команда Эдисона создала лампочку из обугленной хлопчатобумажной нити, которая могла светить 14.5 часов.

Команда и дальше продолжала экспериментировать с нитями накаливания, пока они не остановились на одном из сортов бамбука. Такие лампочки могли гореть до 1200 часов. Эта нить стала стандартом для лампочки Эдисона в течение следующих десяти лет. Эдисон также делал другие усовершенствования для ламп накаливания, он предложил выкачать весь воздух из колбы, чтобы нить не перегорала так быстро, а также он ввел стандарт, на способ подключения лампы к сети ввинчиванием.

Нельзя говорить об истории лампочки не вспомнив об Уильяме Сойере и Абоне Мэне, которые получили патент США на лампы накаливания. Еще был Джозеф Свон, получивший патент на лампу накаливания в Англии. В то время было много споров, нарушает ли лампа накаливания Эдисона патенты всех этих людей. Но, в конце концов, компания Эдисона слилась с компанией Thomson-Houston Electric, которая выпускала лампы под патентом Сойера-Мэна и стала называться General Electric. Затем к этой компании присоединилась английская компания Джозефа Свона.

Вклад Эдисона в историю электрического освещения очень большой. Он не остановился на улучшении лампы накаливания. Он разработал целый ряд изобретений, которые сделали использование лампочек более практичным. Эдисон смоделировал свою технологию освещения на основе существующей газовой системы.

В 1882 году, в Лондоне он показал, что электричество может быть распределено от центрального генератора в нужные места с помощью электрических проводов и труб. Одновременно с этим он сосредоточился на повышении выработки энергии. Была разработана первая коммерческая электростанция Pearl Street Station в нижнем Манхэттене. Кроме того, чтобы отследить сколько энергии использовал каждый клиент Эдисон разработал первый электрический счетчик.

В то время, пока Эдисон работал над своей системой освещения, другие изобретатели продолжали делать маленькие подвижки в улучшении нити накаливания и повышении эффективности лампочки. Следующее большое изменение в лампе накаливания произошло с изобретением вольфрамовой нити европейскими изобретателями в 1904. Новые лампы горели дольше и имели более яркий свет по сравнению с углеродными лампами. В 1913 Ирвинг Ленгмора выяснил, что вместо вакуума лучше использовать инертный газ, такой как азот. Это повысило эффективность лампы накаливания в два раза. В следующие 40 лет ученые продолжали вносить мелкие улучшения, что повысило эффективность лампы и уменьшило потребление энергии. Но в 50 х годах ученые выяснили, что на свет используется только 10 процентов энергии, все остальное уходит на тепло. Тогда они переключились на другие решения. На этом история освещения не закончилась.

Доэлектрическая эпоха

Как и любая историческая тема, развитие электричества будет невозможно уместить в полном объеме в обычной статье. Но мы постараемся упомнить самые важные вехи данного процесса, и вспомним ученых, которые дни и ночи напролет делали свою работу, чтобы сегодня мы с вами: ездили на авто, смотрели телевизор, пользовались смартфонами и освещали свое жилище по ночам.

Игра с огнем

Молния породила огонь для человека

Принято считать, что первым источником огня для древнего человека (назовем его Укротителем) стала молния, ударявшая по деревьям и воспламеняя их. Любопытный и смелый Укротитель приблизился к костру и почувствовал тепло, которое он дает.

Тогда у Укротителя мелькнула мысль (напомним, что сегодня ученые склонны считать, что у древнего человека мозг работал намного лучше, чем у его современника, так как ему постоянно приходилось решать проблему выживания, что делало его ум острым и быстрым), почему я мерзну по ночам в своем убежище, ведь можно его обогреть. Он взял горящую ветку, и радостный побежал домой.

Естественное тепло огня спасало людей от холода многие тысячелетия

С тех пор Укротитель и все его многочисленные родственники и потомки научились не только греться у костра, но и готовить на нем вкусную горячую пищу, освещать им пространство вокруг себя, найти ему религиозное применение, а самое главное – самостоятельно разжигать пламя, так как новая молния может не ударить поблизости годами, а то и десятилетиями.

Приспособления для огня также изменялись со временем:

  • Первоначально огонь горел посреди каменной пещеры, равномерно нагревая и освещая пространство вокруг себя.
  • Затем костер поместили в специальное место, названное очагом, чтобы защитить себя и маленьких детей от ожогов и травм.

Лучина делалась из березовой щепы, так как ее древесина не дает копоти

  • На Руси придумали использовать в качестве источника света зажженную щепу, называемую лучиной. Принцип весьма прост – ее закрепляли под углом на подставке с металлическим наконечником (светец) и поджигали нижний конец. Под огонь ставили металлический лист или сосуд с водой, чтобы уберечь дом от пожара.
  • Люди со временем стали открывать все новые вещества, которые могут поддерживать горение. В ход пошли различные масла и смолы, благодаря которым появились новые источники освещения – масляные горелки и факелы.

Горящий факел

Теперь стало намного проще освещать большие пространства. Лампы горели долго, и давали хоть и тусклое, но равномерное освещение. Спустя много лет такие горелки стали применять и для уличного освещения.

В 18 веке московские улицы освещались масляными лампами

В царских замках и городских ратушах появились специальные служащие, ответственные за горение таких ламп.

Современные свечи делаются по тому же принципу, что и тысячу лет назад

Но история развития освещения огнем на этом не остановилась. Через много тысяч лет появились жировые свечи. Свойства горения жира стали известны человеку, еще задолго до этого, просто найти практическое применение этой информации ранее не получалось. Автор статьи даже представить себе не может, сколько потребовалось времени и усилий, чтобы додуматься, что тонкую палочку нужно окунуть в растопленный жир и дать ему затвердеть. Воистину, человеческие ум и усердие безграничны!

В начале 19 века улицы всех столиц и крупных городов освещались свечными фонарями

На этом использование огня, как источника света не заканчивается. В 1790 году французский инженер Филипп Лебон начал работать над процессами перегонки сухой древесины и вскоре смог выделить газ, горение которого было намного ярче, чем у любого другого на тот день светового прибора. Некоторое время он продолжал свои эксперименты, усовершенствуя процесс, и вскоре свет увидел первый газовый рожок, на который Филипп получил патент.

Изобретатель газовой горелки Филипп Лебон

Первой в мире улицей, освещенной газовыми горелками, считается лондонская Пэлл Мэлл – в 1807 году король Георг IV распорядился об этом, так как улица считалась самой оживленной и требовала регулировки движения.

Уличное освещение на газу, в России прошло многим позже

В Россию газовое освещение улиц и площадей попало спустя более 50-ти лет – на улицах Петербурга и Москвы такие фонари появились в 60-х годах 19 века.

Газовое освещение стало настоящим переворотом в науке и технике того времени. Первые горелки были далеки от совершенства и частенько становили причиной пожаров, но со временем их конструкция дорабатывалась, и они продолжали служить человеку. Такие светильники использовались еще очень долго, даже после появления электрического света.

Природа и источники света

Электромагнитное излучение создается в процессе взаимодействия заряженных частиц. Оптимальным условием для этого будет тепло, которое имеет непрерывный спектр. Максимум излучения зависит от температуры источника. Отличным примером процесса является Солнце. Его излучение близко к аналогичным показателям абсолютно черного тела. Природа света на Солнце обуславливается температурой нагревания до 6000 К. При этом около 40% излучения находится в пределах видимости. Максимум спектра по мощности располагается вблизи 550 нм.

Источниками света также могут быть:

  1. Электронные оболочки молекул и атомов во время перехода с одного уровня на другой. Такие процессы позволяют достичь линейный спектр. Примером могут служить светодиоды и газоразрядные лампы.
  2. Черенковское излучение, которое образуется при движении заряженных частиц с фазовой скоростью света.
  3. Процессы торможения фотонов. В результате образуется синхро- или циклотронное излучение.

Природа света может быть связана и с люминесценцией. Это касается и искусственных источников, и органических. Пример: хемилюминесценция, сцинтилляция, фосфоресценция и др. В свою очередь, источники света разделяются на группы относительно температурных показателей: А, В, С, D65. Самый сложный спектр наблюдается у абсолютно черного тела.

Правдивая история создания лампы накаливания в хронологическом порядке

1840год. Британский химик и астроном Уоррен де ла Рю (Warren de la Rue), между прочим с 1864 года член-корреспондент Петербургской Академии Наук, размещает кусок платиновой проволоки в вакуумной трубке и пропускает через нее электрической ток, тем самым создав первую электрическую лампочку, по трудоемкости исполнения и стоимости больше напоминавшую некое произведение искусства. Больше известен за работы по исследованию Луны, один из кратеров которой назван в его честь.                    
1854 год. Германский часовщик Генрих Гебель (Heinrich Göbel) на выставке в Нью-Йорке представляет первую электрическую вакуумную лампу накаливания, пригодную для применения, сначала использую в качестве нити накаливания обугленную бамбуковую нить, а в качестве колб флаконы от духов. Должного внимания в те годы лампа Гебеля также не нашла. В 75 лет получил признание, как изобретатель первой пригодной для применения лампы накаливания с угольной нитью.
1860 год. Английский физик и химик Джозеф Уилсон Суон (Joseph Wilson Swan), по-русски Лебедь получил патент на вакуумную лампу накаливания, однако трудности в получении вакуума привели к тому, что лампочка Лебедя светила недолго. На этом работу не закончил и в 1878 году получил новый патент. В 1879 году в домах Англии стали делать электрическое освещение.
1874 год. 11 июля инженер-электрик Лодыгин Александр Николаевич получает патент на нитевую лампу, используя в качестве нити накаливания угольный стержень, помещенный в вакуум. Именно Лодыгин первым предложил применять в лампах вольфрамовые нити, закрученные в спираль. В 1906 году в США построил и пустил в ход завод по элетрохимическому получению вольфрама, хрома и др. металлов.  Не сойдясь во взглядах с большевиками в 1917 году покинул страну и в марте 1923 года умер в Бруклине.
1875 год. Русский электротехник, механик Одесского телеграфа Василий Федорович Дидрихсон усовершенствовал лампу Лодыгина, откачав из нее воздух и применяя несколько волосков нити накаливания. Лампа Дидрихсона уже имела некоторый успех, она была применена для освещения большого бельевого магазина на Б. Морской (ныне Герцена), так же очень помогла при строительстве Литейного моста во время подводных работ при ремонте осевшего кессона.
1876 год. Русский электротехник, военный инженер и изобретатель Павел Николаевич Яблочков открыл, что каолин (белая глина) электропроводен при высокой температуре. После чего он создал лампу, где «нить накала» была изготовлена из каолина. Особенностью данной лампы было то, что она не требовала вакуума, и «нить накала» не перегорала на открытом воздухе. Ни одно из изобретений в области электротехники не получало столь быстрого и широкого распространения, как свечи Яблочкова. Это был подлинный триумф русского инженера. Свечи Яблочкова появились в продаже и начали расходиться в громадном количестве, так, к примеру, французское предприятие Бреге ежедневно выпускало свыше 8 тысяч свечей. Каждая свеча стоила около 20 копеек и горела 1,5 часа. Проживая в Париже был посвящен в члены масонской ложи «Труд и Верные Друзья Истины» (Travail et Vrais Amis Fidèles). Умер в России в 46 лет.
. Американский изобретатель и предприниматель (Thomas Alva Edison) в ходе исследовательских работ, установив решающее значение вакуума при изготовлении ламп, закончил разработку лампы накаливания с угольной нитью, ставшей одним из крупнейших изобретений XIX века. Величайшая заслуга Эдисона именно в создании практически осуществимой, широко распространившейся системы электрического освещения с прочной нитью накала, с высоким и устойчивым вакуумом и с возможностью одновременного использования множества ламп, а не в разработке идеи. Одновременно Эдисон изобрёл бытовой поворотный выключатель. Эдисон является автором многочисленных важнейших изобретений: в течение жизни Эдисона Бюро патентов в США выдало ему 1093 патента, важнейшие из которых — это патенты на изобретение фонографа, угольного микрофона, кинетоскопа (оптический прибор для показа движущихся картинок). Так же известен тем, что приняв на работу молодого сербского инженера Николу Теслу не смог воспользоваться его гениальными идеями. Умер в 1931 году в возрасте 84 лет.
Правдивая история создания лампы накаливания в картинках

Опровержения и факты

Некоторые газетчики и недобросовестные ученые подменяют исторические факты, ссылаясь на художественную или рекламную литературу из прошлого. Так, бытуют легенды, что Томас Эдисон никогда никаких изобретений сам не делал, а только воровал чужие идеи. Изобретенная им резьба и сам патрон для ламп освещения будто бы придумал не он, а его сотрудник Стерижер. Некоторые говорят и о том, что даже вилка с розеткой – не его заслуга.

Недобрая слава за Эдисоном закрепилась ввиду его чрезмерного увлечения патентами и прибылью от изобретений. Известен его конфликт с молодым инженером из Сербии Николой Тесла. Судился Эдисон и с братьями Люмьер за право на киноаппарат. Это при том, что великий американец не имел ни высшего, ни специального технического образования.

Однако заслуга Эдисона в продвижении различных технических средств велика. Он жил в довольно консервативном XIX веке и, тем не менее, смог внедрить электричество для освещения улиц и домов, снизил его себестоимость, смог наладить производство дешевых и сравнительно долговечных ламп. Его декоративные лампы мы видим в ресторанах до сих пор.

Возбужденные электроны

Если подвести энергию извне, электрон «помимо своей воли» переходит на более высокий уровень, в возбужденное состояние. Однако возбужденный электрон чрезвычайно упрям и остается в таком состоянии совсем недолго, 10-8 секунды, то есть одну сотую миллисекунды. Затем он возвращается в основное состояние, выделяя при этом энергию в форме частицы света, называемой фотоном. Энергия фотона в точности равна разности энергий возбужденного и основного состояния.

  1. Электрон в основном состоянии получает дополнительную энергию.
  2. Электрон в возбужденном состоянии на втором уровне.
  3. Электрон остается в возбужденном состоянии порядка 10-8 секунды.
  4. Электрон возвращается на первый уровень, в основное состояние.
  5. При этом энергия возбужденного состояния снова высвобождается (испускается) в форме кванта света.

Возбудить электроны можно разными способами, например, высокой температурой. Образно говоря, при высоких температурах атомы начинают дрожать особенно сильно. Из-за этого дрожания электроны в электронной оболочке переходят на более высокий энергетический уровень. Это называют термическим возбуждением.

Свет, излучаемый раскаленными телами (нитью лампы накаливания, Солнцем), порождают «перескакивающие» обратно электроны. Если бы электроны не были такими упрямыми и не стремились обратно в основное состояние, то не существовало бы ни света, ни Солнца, ни тех, кто это заметил бы.

Возбуждение электронов может проходить и под влиянием квантов света. Это называют оптическим возбуждением. Однако квант света должен обладать энергией, в точности равной разности между двумя состояниями электрона, ни больше, ни меньше.

Предпосылки создания лампочки

Патент на создание лампы накаливания принадлежит американскому предпринимателю Томасу Эдисону. Исторические факты указывают на прототип современной лампочки, созданный русским учёным Александром Лодыгиным.

Все значимые для электрификации открытия происходили в конце XIX века. Чем же пользовалось человечество до этого изобретения?

■ Первым источником света для закрытых помещений являлись напольные костры. На их смену пришли закрытые решетчатые кувшины с тлеющими углями внутри. Первобытные изобретения были крайне опасными: пожары и высокая задымленность были причинами увечий и смертей. Поэтому наши предки озаботились созданием подконтрольного освещения.

■ Древний Египет — родина первой масляной лампы или лампы Дендеры. Прибор использовался во многих храмах и представлял собой высокую колонну из песчаника, наполненную внутри раствором, который поджигали.

■ Жители Древнего Рима в качестве светильников использовали расписные вазы разных форм и размеров. В них также заливали масло. Способ был распространенным, но довольно дорогим из-за стоимости масел.

■ Конструкцию масляной лампы довели до совершенства в XVII — XIX веках: сначала была создана система непрерывной подпитки фитиля маслом, затем — особая форма емкости из стекла, безопасная и хорошо распространяющая свет.

■ Повсеместно использовались лампады — миниатюрные масляные лампы с открытым огнем.

■ Бедные семьи освещали свои дома лучинами — тлеющими длинными щепками от больших бревен.

■ В Средневековье стали пользоваться прототипом современных свечей — натопленной массой из жира или воска, в которую помещались волосы или нити в качестве фитилей.

■ Традиционные цилиндрические свечи появились не ранее XV века. Их изготавливали из воска, парафина или обычного сала. Они были менее затратными и более безопасными в использовании, но для освещения даже небольшого помещения их требовалось огромное количество.

■ В XVIII — XIX веках разрабатывали два типа освещения: газовое и керосиновое. Его использовали для улиц и домов.

Ученые и технологи многих стран пытались найти способ создания источника света: надежного, безопасного и длительного в использовании. Обнаружение электричества как особого вида энергии дало необходимое направление.

Особенности проектирования и монтажа

Проект наружного освещения территорий промышленных предприятий разрабатывают в соответствии с требованиями СП 52.13330-2016, ПУЭ и другой нормативной документации. В СП указаны нормы освещенности производственных и хозяйственных объектов, критерии выбора и правила установки прожекторов и светильников.

Рекомендуемые показатели световой отдачи осветительных приборов разных типов приведены в таблице 1.

Тип источника света Световая отдача световых приборов (СП), лм/Вт, не менее
Общее освещение общественных помещений
СП со светодиодами:
— с индексом цветопередачи СП 52.13330.2016 Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95* (с Изменением N 1) 100
— с индексом цветопередачи СП 52.13330.2016 Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95* (с Изменением N 1) 105
СП с люминесцентными источниками света 55
СП с металлогалогенными источниками света 65
Общее освещение производственных помещений
СП со свето диодами:
— с индексом цветопередачи СП 52.13330.2016 Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95* (с Изменением N 1)>80 100
— с индексом цветопередачи СП 52.13330.2016 Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95* (с Изменением N 1) 105
СП с люминесцентными источниками света 55
СП с металлогалогенными источниками света 65
СП с натриевыми лампами высокого давления 75
СП с ртутными лампами высокого давления 60
Освещение мест производства работ вне зданий
СП со светодиодами 100
СП с металлогалогенными источниками света 60
СП с люминесцентными источниками света 55
СП с натриевыми лампами высокого давления 75
СП с ртутными лампами высокого давления 60
Наружное освещение территорий
СП со светодиодами 110
СП с металлогалогенными источниками света 60
СП с люминесцентными источниками света 55
СП с натриевыми лампами высокого давления 75
СП с ртутными лампами высокого давления 60
Примечания
1. Световая отдача рассчитывается по ies-файлу на светильник.
2. Для световых приборов с глубокой кривой силы света световая отдача может быть снижена на 20% (типы кривых силы света см. в таблице 2 и на рисунке 1 ГОСТ Р 54350-2015).
3. Настоящие требования не распространяются на световые приборы местного освещения.

Нормы освещенности для производства технологических операций вне зданий зависят от разряда зрительной работы, а средние показатели для открытых площадок — от объекта и интенсивности движения.

Осветительные приборы закрепляются:

  • На опорах высоковольтных линий напряжением до 1 кВ, специальных опорах и прожекторных мачтах, которые должны быть расположены на расстоянии более 1 м от проезжей части.
  • На сооружениях, зданиях, транспортных узлах и ограждениях.

Высота установки светильников и прожекторов зависит от мощности светового потока и других параметров. При монтаже осветительных приборов рассеянного света оборудование с лампами до 6000 лм размещают на высоте не менее 3 м. Устройства со световым потоком более 6000 лм устанавливают на высоте более 4 м.

Приборы для освещения открытых площадок предприятия должны быть безопасными в эксплуатации и экономно потреблять энергию. Среди других требований — продолжительный срок службы, устойчивость к воздействию пыли, влаги, перепадам температуры и вибрациям.

Таким критериям больше всего соответствуют светодиодные прожектора и светильники. Помимо высоких эксплуатационных показателей осветительные приборы на основе светодиодов не допускают создания слепящего эффекта и позволяют избежать светового загрязнения. Наличие ЭПРА обеспечивает управление отдельными группами осветительных систем и способствует рациональному потреблению энергии.

Современные лампы накаливания

Несмотря на устаревание ламп накаливания, их дальние родственники, вакуумные радиолампы, все еще используются в звуковоспроизводящей аппаратуре. Лампы накаливания для освещения применяются только в быту (с малым потреблением энергии), в других сферах они активно заменяются более экономичными моделями.

Хотя изобретатель лампочки даже не предполагал такого массового использования прибора искусственного освещения, своим открытием он полностью изменил мир. Лампы накаливания отправились и в далекий космос, и в самые глубокие места мирового океана.

В последние годы в магазинах осветительных приборов можно купить винтажные модели ламп накаливания Эдисона. Они имеют внешний вид в стиле ретро и могут стать отличными элементами декора как в жилом доме, так и общественном месте (ресторане, кафе), стать стильным дополнением оригинального интерьера. Некоторые из моделей не имеют даже нитей накаливания, а в корпус от обычной лампы вставлены светодиоды.

Жирные штучки

Чуть позже появились свечи. Жир, смола и воск вошли в обиход уже довольно давно. Было нетрудно заметить, как ярко вспыхивали капли жира, падающие с куска мяса на угли. Осталось придумать, как найти этому полезное применение вне костра. Возможно, потребовалось много усилий и немало экспериментов, прежде чем тонкую палочку окунули в растопленный жир, достали, и когда жир застыл — один ее конец подожгли. Так появилась первая свеча. Густой растительный жир (например, из бобовых) тоже прекрасно справлялся с этой задачей. Но лучшим вариантом оказался пчелиный воск, который оставался на руках и палках после добывания меда из ульев. Позже, с появлением веревочек и шнурочков, появились и более совершенные фитили.

Масляные лампы тоже заняли свое место в истории освещения, развиваясь параллельно со свечами. Многие племена не имели достаточного количества твердого жира или воска, зато жидкого масла было завались. Масляные лампы не были плохими, возможно, даже получше первых свечей, но у них был один недостаток — их не так-то просто было носить с собой. Но если вам вдруг никуда не надо идти — то ваш лагерь, пещера или хижина прекрасно освещены.

Так продолжалось тысячелетиями. Факелы, свечи и масляные лампы были нашими основными источниками света до недавнего времени. Только с наступлением индустриальной эпохи человечество начало разрабатывать новые технологии освещения.

Электронные уровни и энергия

Как мы видели, электроны в оболочке располагаются по так называемым уровням. На каждом уровне может разместиться ограниченное число электронов: на самом близком к ядру — всего два, на следующем уже восемь, а на третьем целых 18. На внутренних уровнях электроны обладают меньшей энергией, а на внешних — большей. Таким образом, энергия электрона увеличивается по мере возрастания номера уровня и удаления от ядра. Естественно, в первую очередь электроны занимают уровни с минимальной энергией. Это легко объяснить: отрицательно заряженные электроны притягиваются положительно заряженным ядром и поэтому приближаются к нему, насколько возможно. Такое состояние электронов называют основным (невозбужденным).

Это стремление к основному состоянию можно сравнить с поведением шарика, находящегося в полусфере. Если поднять его из нижней точки полусферы к краю, то он будет стремиться обратно к нижней точке и через некоторое время остановится там.

В качестве другого примера можно привести растянутую пружину. Если ее отпустить, она снова сожмется, тем самым вернувшись в основное энергетическое состояние. Оба случая иллюстрируют основополагающий принцип природы, и примеров можно найти сколько угодно.

Дополнительные требования

Для снижения вредных и опасных факторов при пожаре следует создавать цепь электропитания аккумуляторных светодиодных светильников кабелем категорий «нг», «LS», «FR». В этих изделиях оболочки изготовлены с применением особых добавок, которые предотвращают горение, уменьшают выделение дыма, сохраняют стойкость при прямом контакте с открытым пламенем. Как и сами источники, такие линии должны сохранять функциональность в течение 1 часа.

Важно! Официальные правила по данной теме с акцентом по пожарной безопасности содержит «Технический регламент» (ФЗ № 123 от 22 июля 2008 г. с актуальными поправками в редакции от 13 июля 2015 г)

Каждый светодиодный аварийный светильник с встроенным аккумулятором в обязательном порядке оснащают кнопкой для регламентной проверки

Для удобства допустим ее перенос в определенное место, а также подключение нескольких изделий к одному выключателю. В частности, не запрещено тестирование в удаленном режиме при соответствующем оснащении

Каждый светодиодный аварийный светильник с встроенным аккумулятором в обязательном порядке оснащают кнопкой для регламентной проверки. Для удобства допустим ее перенос в определенное место, а также подключение нескольких изделий к одному выключателю. В частности, не запрещено тестирование в удаленном режиме при соответствующем оснащении.

В любом из выбранных вариантов необходимо строгое выполнение временного графика проверок. Через каждые две недели (или чаще) ответственный работник предприятия должен выполнять обход или дистанционное испытание. Результаты фиксируют в контрольном журнале с заверением подписью.

Изучая эту картинку, внимательный человек заметит клавишный выключатель без фиксации положений. Такой компонент установлен специально. Усложняется проверка, так как один работник удерживает кнопку, пока второй выполняет последовательную проверку нескольких светодиодных приборов. Однако такое решение принято для исключения ошибочных намеренных и случайных действий. Автономное питание по завершении процедуры отключается автоматически, предотвращая разрядку аккумуляторных батарей.

Автономный источник питания проверяют каждые 6 месяцев. Алгоритм регламентных работ определяет производитель. При необходимости соответствующие инструкции несложно найти в интернете. В отдельных ситуациях допустимо восстановление заряда с применением внешних питающих и контрольных устройств. Восстановительные процедуры выполняют по схеме, поддерживающей оптимальные уровни тока и напряжения. Нельзя превышать предельный срок службы, указанный в сопроводительной документации. Как правило, он не превышает четырех лет.

Следующее важное требование – совместимость по электромагнитным параметрам. Все приборы до попадания в торговые сети тестируют, подтверждая отсутствие проблем соответствующим сертификатом

Недостаточно качественный светодиодный светильник с встроенным аккумулятором «выдает» на выходе импульсные помехи

При большой амплитуде они вызывают сбои в работе компьютерного, медицинского и другого подсоединенного к сети оборудования

Недостаточно качественный светодиодный светильник с встроенным аккумулятором «выдает» на выходе импульсные помехи. При большой амплитуде они вызывают сбои в работе компьютерного, медицинского и другого подсоединенного к сети оборудования.

Официальные требования по этому параметру приведены в ГОСТе 60598-2-22-2012. Там же указаны ограничения по материалам корпуса. Они должны не воспламеняться при высокотемпературном воздействии. Допустимо частичное разрушение конструкции, но без поддержания процесса горения.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: