Генераторы прямоугольных импульсов

Параметры пилообразного напряжения

Линейно изменяющееся или пилообразное напряжение имеет форму неравностороннего треугольника, то есть в течение определённого периода времени нарастает или спадает практически по линейному закону до некоторого амплитудного значения, а затем возвращается к исходному уровню. Временные диаграммы различных видов пилообразного напряжения изображены ниже



Временные диаграммы пилообразного напряжения: положительно нарастающее (а), положительно падающее (б), отрицательно падающее (в), отрицательно нарастающее (г).

Как и любой из генераторов импульсов, генератор пилообразного напряжения может работать как в автоколебательном, так и в ждущем режиме, но в любом случае можно выделить два основных периода работы: рабочий период (ТР), когда напряжение нарастает или спадает и период обратного хода (ТО), в течении которого напряжение возвращается к исходному уровню. Поэтому период повторения пилообразных импульсов будет равен сумме рабочего периода и обратного хода

T = T_{P} + T_{O}

Данное равенство справедливо для автоколебательного генератора пилообразного напряжения, в случае ждущего генератора к выражению добавляется также период ожидания запускающего импульса (ТOZ), в течении которого выходное напряжение имеет некоторый постоянный уровень UBbIX = const.

T = T_{P} + T_{O} + T_{OZ}

Ввиду того что практически невозможно обеспечить постоянные параметры генератора пилообразного напряжения для оценки линейности рабочего участка напряжения вводится коэффициент нелинейности ξ. Под коэффициентом нелинейности понимается относительное изменение скорости нарастания напряжения во время рабочего хода

где kН, kК – соответственно скорость нарастания напряжения в начале и в конце рабочего хода.

Эффективность ГЛИН зависит от коэффициента использования напряжения питания ε, которое определяется, как отношение амплитуды выходного напряжения Um к значению напряжения источника питания Е

\varepsilon = \frac{U_{m}}{E}

  • где Um – максимальная амплитуда импульсов,
  • Е – напряжение источника питания.

Большинство параметров генераторов пилообразного напряжения являются расчётными и зависят от номиналов элементов схемы и назначения генератора:

  • максимальная амплитуда напряжения Um – от единиц до сотен вольт;
  • длительность рабочего периода ТР – от нескольких микросекунд до нескольких сотен и тысяч миллисекунд;
  • коэффициент нелинейности ξ: в осциллографии – до 10%, в телевидении – до 5%, в электроннолучевых индикаторах – до 2%, в точных каскадах сравнения – 0,1…0,2%;
  • коэффициента использования напряжения питания ε – от 0,1 (в простейших генераторах) до 0,9 (у наиболее совершенных).

Генерация прямоугольных сигналов частотой 1 кГц в 8051

Мы можем запрограммировать микроконтроллеры 8051 на генерацию прямоугольной волны желаемой частоты. Здесь частота сигнала составляет 1 кГц, поэтому период времени составляет 1 миллисекунду. Рабочий цикл 50% лучше всего подходит для идеальных прямоугольных волн. Итак, Ton=Tот= 0.5 мс.

Схема и подключения: Чтобы сделать схему, нам понадобятся следующие компоненты:

  • ‌8051 микроконтроллер
  • ‌Цифро-аналоговый преобразователь
  • Резисторы и конденсаторы
  • Операционный усилитель

Мы подключаем вывод сброса к источнику напряжения (Vcc), а выводы данных ЦАП — к порту 1 микроконтроллера 8051. Самый старший бит должен быть связан с A1 вывод (вывод 5) на ЦАП и младший бит с A8 штырь.

Логика: Сначала мы устанавливаем любой из портов 8051 на логическую 1 или высокий уровень, а затем ждем некоторое время, чтобы получить постоянное напряжение постоянного тока. Это время известно как задержка. Теперь мы устанавливаем тот же порт на логический 0 или низкий и снова ждем некоторое время. Процесс продолжается в цикле, пока мы не выключим микроконтроллер.

Генератор прямоугольных сигналов переменной частоты

Чаще всего для генерации прямоугольных волн используются схемы мультивибраторов. RC- или LR-схемы могут генерировать периодическую последовательность квазипрямоугольных импульсов напряжения, используя характеристику насыщения усилителя. Схема генератора прямоугольных сигналов переменной частоты состоит из четырех основных компонентов: линейного усилителя и инвертора с общим коэффициентом усиления K, схемы ограничителя с некоторыми конкретными характеристиками ввода-вывода и дифференциатора, состоящего из RC или LR цепи с постоянной времени? . Временной период полученного сигнала

Т = 2? Лн (2К-1)

Эта схема мультивибратора может генерировать однородные импульсы напряжения из-за симметричной характеристики насыщения схемы ограничителя. Мы можем изменять частоту колебаний, изменяя либо постоянную времени дифференциатора, либо коэффициент усиления усилителя.

Улучшение схемы

Как можно было бы доработать эту схему? Вот некоторые соображения.

Частота такого генератора весьма нестабильна. Для исправления этого недостатка часто заменяют конденсатор на кварцевый резонатор нужной частоты, а также пропускают сигнал ещё через один-два элемента 2И-НЕ.

Для регулировки частоты можно постоянный резистор заменить на подстроечный, а также добавить переключатель и несколько конденсаторов, чтобы менять ёмкость. Однако, как и в любой схеме, есть ограничения на номиналы деталей. Например, сопротивление R1 не может быть менее 1 кОм.

Более интересная задача — регулировка скважности. В приведённой схеме длительность импульса равна длительности паузы, скважность 50%

А что если мы хотим короткий импульс и длинную паузу, или наоборот? Тогда нужно последовательно с R1 прицепить примерно такую конструкцию:

Схема регулировки скважности

Здесь заряд и разряд конденсатора идут через разные плечи R2 благодаря диодам VD1 и VD2, так что соотношение импульса и паузы будет разное в зависимости от положения движка R2.

↑ Список источников

1. Мосягин В.В. Секреты радиолюбительского мастерства. – М.: СОЛОН-Пресс. – 2005, 216 с. (с. 47 – 64). 2. Шустов М.А. Практическая схемотехника. 450 полезных схем радиолюбителям. Книга 1. – М.: Альтекс-А, 2001. – 352 с. 3. Шустов М.А. Практическая схемотехника. Контроль и защита источников питания. Книга 4. – М.: Альтекс-А, 2002. – 176 с. 4. Низковольтная «мигалка». (За рубежом) // Радио, 1998, №6, с. 64. 5. Датагорская статья «Главный инструмент — паяльник!» 6. Датагорская статья «Пайка SMD деталей в домашних условиях» 7. Даташит на LM3909 8. Шумейкер Ч. Любительские схемы контроля и сигнализации на ИС. – М:.Мир, 1989 (схема 46. Простой индикатор разряда батареи, с. 104; схема 47. Маркер фалиня (мигающий), с. 105). 9. Генератор на LM3909 // Радиосхема, 2008, №2. 10. Nahrada obvodu LM3909 // Prakticka electronic A Radio, 2009, №6, с. 22. 11. Одинец А.Л. Необычное применение LM3909 // Радиоаматор, 2009, №12, с. 16. 12. Борисевич К. ИМС LM3909 в радиолюбительских конструкциях // Радиомир, 2010, №1, с. 19. 13. Discrete Version Of The LM3909 Oscillator IC 14. Белоусов О.В. Эквивалент ИМС LM3909 на деталях для поверхностного монтажа // Радиоаматор, 2011, №11, с. 34, 35.

Схема DDS-генератора сигналов

Данный генератор базируется на алгоритме DDS-генератора Jesper, программа была модернизирована под AVR-GCC C со вставками кода на ассемблере. Прибор имеет два выходных сигнала: первый — DDS сигналы, второй — высокоскоростной (1–8МГц) «прямоугольный» выход, который может использоваться для оживления МК с неправильными фузами и для других целей.

Высокоскоростной сигнал HS (High Speed) берется напрямую с микроконтроллера Atmega16 OC1A (PD5). DDS-сигналы формируются с других выходов МК через резистивную R2R-матрицу и через микросхему LM358N, которая позволяет осуществить регулировку амплитуды (Amplitude) сигнала и смещение (Offset).

Смещение и амплитуда регулируются при помощи двух потенциометров. Смещение может регулироваться в диапазоне +5В…-5В, а амплитуда — 0–10В. Частота DDS-сигналов может регулироваться в пределах 0–65534 Гц, этого более чем достаточно для тестирования аудио-схем и других радиолюбительских задач.

Генератор с триггером

Триггером называют устройство, которое отвечает за передачу сигнала. На сегодняшний день они продаются однонаправленные или двухнаправленные. Для генератора подходит только первый вариант. Устанавливается вышеуказанный элемент возле адаптера. При этом пайку необходимо проделывать только после тщательной зачистки всех контактов.

Непосредственно адаптер можно выбрать даже аналогового типа. Нагрузка в данном случае будет небольшой, а уровень отрицательного сопротивления при удачной сборке не превысит 5 Ом. Параметр возбуждения колебаний с триггером в среднем составляет 5 мс. Основную проблему генератор импульсов имеет такую: повышенная чувствительность. В результате с блоком питания выше 20 В указанные устройства работать не способны.

Настройка

Если по окончанию загрузки пользователь получил сообщение «Done uploading», значит, генератор сигналов на Ардуино с дисплеем готов к работе. Следующий шаг – соединение модулей.

Выходные сигнальные волны снимаются с контактов генератора:

  • QOUT1,
  • QOUT2 (прямоугольный),
  • ZOUT1,
  • ZOUT2 (синусоидальный).

После сборочных работ следует тщательно проверить, правильно ли подключены все контакты. Если все правильно подключено – подаем питание в устройство из электросети.

По истечению пары секунд на дисплее загорится стандартное значение частоты – 10 кГц. Значение можно изменить в любое время – для этого в листинге выше запрограммированы кнопки вверх, вниз, влево и вправо.

Пробуем на практике

Как вы уже поняли, частота генератора определяется параметрами времязадающей RC-цепочки: от сопротивления резистора и ёмкости конденсатора будет зависеть, сколько времени будет длиться заряд/разряд конденсатора. Примерная формула такова:

Верхняя частота генератора ограничена скоростью переключения КМОП-элементов (условно, порядка 2 МГц). При этом и на низких частотах генератор работает уверенно:

  • С1 . . . . . . . 1 мкФ
  • R1 . . . . . . . 680 кОм
  • f . . . . . . . . 1 Гц.

Схема собрана на макетной плате. Чтобы увидеть работу генератора, я подключил к его выходу светодиод через токоограничивающий резистор. Считается, что микросхема этого типа может выдерживать выходной ток до 6.8 мА, так что вполне способна засветить не очень мощный светодиод без дополнительного ключа на транзисторе. Вот что получилось:

Ну а вот как выглядит сигнал генератора на осциллограмме:

Осциллограмма выходного сигнала генератора

Классификация генераторов импульсов. Автоколебательные генераторы

Определение 1

Генератор импульсов — это устройство, которое способно создавать волны определенной формы.

Определение 2

Генератор прямоугольных импульсов — это генератор, который используется для получения колебаний прямоугольной формы.

В настоящее время существует большое разнообразие генераторов импульсов, которые могут классифицироваться по следующим признакам:

  1. Выходная последовательность основных импульсов – кодовые комбинации, одиночные импульсы, кодовые пакеты, парные импульсы и т.п.
  2. Количество каналов – одноканальные и многоканальные.

Генераторы прямоугольных импульсов широко используются в телевидении, технике, радиотехнике, системах автоматического управления. В данных генераторах, в отличии от генераторов гармонических колебаний, используется цепь обратного порядка, и активный элемент функционирует в нелинейном режиме. В зависимости от режима работы различают два основных вида генераторов прямоугольных импульсов:

  1. Автоколебательные мультивибраторы
  2. Ждущие мультивибраторы.

Пример схемы автоколебательного мультивибратора изображена на рисунке ниже.

Рисунок 1. Схема автоколебательного мультивибратора. Автор24 — интернет-биржа студенческих работ

Активным элементом автоколебательного мультивибратора является инвертирующий триггер Шмитта, который реализован на операционном устройстве и двух резисторах (R1 и R2). Функция третьего резистора и конденсатора заключается в формировании времязадающей цепи, которая определяет продолжительность формируемых сигналов. Операционный усилитель в данном случае охвачен связью R1 — R2 и находится в режиме насыщения, поэтому напряжение на выходе равняется напряжению насыщения (Uвых = Uнас). Переключение операционного усилителя из положительного насыщения в отрицательное или обратно происходит в том случае, когда напряжение, сформированное на инвертирующем входе, достигает отрицательного или положительного порога срабатывания – –BUнас или Buнас. В данном случае B – коэффициент обратной связи, который рассчитывается по следующей формуле:

Принцип работы

Допустим, после включения питания на входе DD1.1 установился низкий уровень. Значит, на выходе будет высокий уровень, который попадает на вход DD1.2, на выходе которого, в свою очередь, будет опять низкий уровень. Конденсатор C1 разряжен. И он начинает заряжаться через резистор R1, который правым выводом подключён к выходу DD1.1 — к точке, где потенциал высокий.

Процесс заряда конденсатора C1

Вы вправе спросить: почему же этот ток не утекает на вход элемента DD1.1 — ведь на этом входе в данный момент низкий потенциал? Кажется, что логический элемент должен скушать весь ток, а конденсатору ничего не достанется. Ответ: дело в высоком входном сопротивлении элементов DD. На их входы ответвляется мизерная часть тока, которой можно пренебречь. Кстати, благодаря этому факту, сопротивление R1 может быть достаточно большим, несколько мОм,  что позволяет получить довольно низкие частоты генерации.

Итак, постепенно напряжение на C1 растёт, и в какой-то момент на левой обкладке накопится достаточный «плюс», который переключит DD1.1 в состояние 1 на входе, 0 на выходе. Тут же и DD1.2 поменяет состояние на противоположное: 0 на входе, 1 на выходе. И процессы в RC-цепочке пойдут в обратную сторону, до тех пор, пока напряжение на конденсаторе снова не переключит DD1.1, а за ним DD1.2 и весь цикл повторится сначала. Описание несколько упрощённое (вблизи момента переключения там происходят чуть более сложные процессы), но достаточное для первоначального понимания.

Проверка работы

В первом случае после конструирования должен получиться стандартный мотор-редуктор Ардуино синусоидальных и прямоугольных волновых сигналов, диапазон которых регулируется от до 40 МГц.

Проверить управление легче легкого – есть 2 кнопки – вверх и вниз, для настройки грубого характера, а другие – влево и вправо – настраивают аппарат на точную проверку. Настроить шаг можно в зависимости от установленной частоты на аппарате.

Во втором случае итоговое решение будет выглядеть так:

Кроме того, перед переносом программы, указанной в разделе «Программное обеспечение», нужно проверить правильность кода с помощью компилирования.

Аппаратная часть прибора легко соединяется с использованием отдельных модулей, поэтому частотный генератор на базе микропроцессора Ардуино может сделать начинающий разработчик электронных устройств.

Схема генератора сигналов на микроконтроллере

Электронные устройства часто содержат в себе в качестве одного из узлов какой-либо генератор сигналов. В зависимости от требований к этому генератору, выбирают один из трёх основных вариантов его реализации: аналоговый генератор, генератор с ФАПЧ или генератор с прямым цифровым синтезом сигнала. Каждый имеет свои достоинства и недостатки. Но если устройство содержит микроконтроллер, то может быть выгодным использовать его для цифрового синтеза сигнала. В предыдущих статьях, посвящённых DAC микроконтроллера, уже демонстрировалась возможность генерации сигнала.

Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: ICL8038 Генератор прямоугольных, треугольных и синусоидальных импульсов

Генератор треугольной волны на ОУ

Схема генератора треугольной волны состоит из двух частей. Одна часть генерирует прямоугольную волну, а вторая часть преобразует прямоугольную волну в треугольную форму волны. Первая схема состоит из операционного усилителя и делителя напряжения, подключенного к неинвертирующему выводу операционного усилителя. Инвертирующий терминал заземлен.

Выход этого операционного усилителя действует как вход для второй части, которая представляет собой схему интегратора. Он содержит еще один операционный усилитель, инвертирующий вывод которого соединен с конденсатором и резистором, как показано на рисунке 3. Неинвертирующий вывод операционного усилителя заземлен. Скажем, первый выход — Vo1 а второй выход — Vo2. Во2 связан с первым операционным усилителем как обратная связь.

Компаратор S1 постоянно сравнивает напряжение в точке A (рисунок 3) с напряжением земли, т. е. с нулем. Согласно положительному и отрицательному значению, прямоугольная волна генерируется при Vo1. На осциллограмме мы видим, что когда напряжение в точке A положительное, S1 дает + VСб как выход. Этот выход обеспечивает вход для второго операционного усилителя, который создает отрицательное линейное напряжение Vr как выход. Vr дает отрицательное напряжение до определенного значения. Через некоторое время напряжение на A упадет ниже нуля, и S1 дает -VСб как выход.

На этом этапе значение Vr начинает увеличиваться в сторону положительного напряжения насыщения. Когда значение пересекает + Vr, выходной сигнал прямоугольной формы увеличивается до + V.Сб. Это явление продолжается непрерывно, образуя как прямоугольную, так и треугольную волну (показано на рисунке 4).

Для всей этой схемы мы замечаем, что когда Vr изменяется с положительного на отрицательный, возникает положительное напряжение насыщения. Аналогично, когда Vr изменяется с отрицательного на положительный, возникает отрицательное напряжение насыщения. Резистор R3 подключен к Vo1 а резистор R2 подключен к Vo2. Следовательно, уравнение можно записать как,

-Vr/R2 = -(+VСб/R3)

Vr = -R2/R3(-VСб)

Пиковое выходное напряжение Vpp=Vr-(-Вr)=2Вr=2R2/R3(VСб)

Выход на схеме интегратора определяется выражением

Здесь Vo=Vpp и Vвход= -VСб

Итак, помещая значения, которые мы получаем,

Следовательно,

Итак, частота

Модель прямоугольных импульсов с регулятором

На сегодняшний день генератор прямоугольных импульсов с регуляторами является довольно распространенным. Для того чтобы у пользователя была возможность настраивать предельную частоту устройства, необходимо использовать модулятор. На рынке производителями они представлены поворотного и кнопочного типа. В данном случае лучше всего остановиться на первом варианте. Все это позволит более тонко проводить настройку и не бояться за сбой в системе.

Устанавливается модулятор в генератор прямоугольных импульсов непосредственно на адаптер. При этом пайку необходимо производить очень аккуратно. В первую очередь следует хорошо прочистить все контакты. Если рассматривать бесконденсаторные адаптеры, то у них выходы находятся с верхней стороны. Дополнительно существуют аналоговые адаптеры, которые часто выпускаются с защитной крышкой. В этой ситуации ее необходимо удалить.

Для того чтобы у устройства была высокая пропускная способность, необходимо резисторы устанавливать попарно. Параметр возбуждения колебаний в данном случае обязан находиться на уровне 4 мс. Как основную проблему генератор прямоугольных импульсов (схема показана ниже) имеет резкое повышение рабочей температуры. В данном случае следует проверить отрицательное сопротивление бесконденсаторного адаптера.

УПРАВЛЕНИЕ ДЛИТЕЛЬНОСТЬЮ ИМПУЛЬСОВ ЧЕРЕЗ FLASH-ПАМЯТЬ

Выбор режима USART/Flash осуществляется подачей логических единиц на оба входа M0 и M1. При этом для работы в режиме Flash на входе RX также должна быть непрерывная логическая единица.

Настройки, хранимые во Flash-памяти, соответствуют константам CC (конфигурация выводов), LLLL (длительность импульсов) и PPPP (длительность пауз между импульсами) из таблицы выше, значения которых устанавливаются изготовителем либо программируются через режим USART.

Если в константе CC биты C0=1 и C3=1, генерация начнётся сразу при переходе в режим Flash и будет продолжаться всё время нахождения в нём. Если бит C0=0, генерация будет включаться/выключаться входом Run, при этом состояние покоя конфигурируется битами C1 и C4 (примеры смотрите выше).

Режим Flash удобен для создания автономных генераторов постоянной частоты, не требующих настройки «снаружи» (через напряжение или USART) и имеет более высокую стабильность частоты, чем при управлении напряжением (из-за отсутствия влияния помех на входе Ur).

Заводские установки во Flash-памяти по умолчанию:

CC = 00 (управление генерацией сигналами Run и IdleState);

LLLL = десятичное 7245 (соответствует 500 мс);

PPPP = десятичное 7245 (соответствует 500 мс).

Таким образом, по умолчанию микросхема настроена как генератор частоты 1 Гц (коэффициент заполнения 50%) с управлением от входов Run и IdleState.

При поставке мы можем сконфигурировать микросхему по Вашим пожеланиям (подробнее ниже), либо Вы сможете самостоятельно однократно или многократно переконфигурировать её посредством USART (потребуется соответствующее оборудование). Встроенная энергонезависимая память микросхемы обеспечивает не менее 100000 циклов перезаписи (обычно до 1000000).

Общие принципы работы проекта

Генератор состоит из небольшого числа компонентов: платы Arduino Nano, ЖК дисплея, 3-х подтягивающих резисторов и 3-х кнопок.

В генераторе можно изменять период (частоту) повторения импульсов с помощью кнопок, подключенных к контактам 6 и 7 платы Arduino

С помощью кнопки, подключенной к контакту 13, можно изменять скважность импульсов. Длительность импульсов и скважность будут отображаться в первой строке ЖК дисплея, а частота – во второй строке ЖК дисплея

Минимальный шаг для настройки периода повторения импульсов составляет 1 мкс, поэтому частота импульсов будет изменяться также дискретно, например, периоду 1 мкс будет соответствовать частота 1 МГц, периоду 2 мкс – частота 500 кГц, периоду 3 мкс – частота 333.333 Гц и т.д. То есть по мере уменьшения частоты увеличивается плавность ее настройки. Конечно, это не очень практично для высоких частот, но это вынужденная плата за простоту устройства. Более продвинутый генератор можно собрать на основе использования DDS модуля, но это уже будет значительно более сложное устройство.

Для проверки работы генератора автор проекта использовал простой одноканальный осциллограф (который также можно собрать на основе платы Arduino). Для удобства работы с генератором он был помещен в небольшой корпус.

ГЕНЕРАТОР ПАЧЕК ИМПУЛЬСОВ

Генератор пачек импульсов может быть реализован с помощью двух одинаковых микросхем генератора импульсов, при этом выход Pulses первой микросхемы соединяется с входом Run второй, а вход IdleState первой микросхемы заземляется (см. схему справа).

Включение и выключение генерации пачек импульсов осуществляется с помощью входа Run первой микросхемы, а состояние покоя при выключенной генерации – входом IdleState второй микросхемы.

Входы Ur / RX, M0 и M1 первой микросхемы определяют параметры пачек, а входы Ur / RX, M0 и M1 второй микросхемы – параметры импульсов внутри пачек. При этом, если необходимо, первая и вторая микросхемы могут работать в разных режимах (например, одна от потенциометра, а другая по настройкам Flash-памяти).

Возможное применение генераторов пачек импульсов: прерывистая звуковая сигнализация, прерывистая световая индикация с регулированием яркости и другое.

Я хочу сделать генератор прямоугольных импульсов с переменной скважностью и входным напряжением 12 В. Какие будут требования и как это сделать?

Генератор прямоугольных импульсов в сочетании с диодами может помочь в изменении рабочего цикла.

Схема генератора прямоугольных импульсов, приведенная ниже, позволяет нам изменять рабочий цикл. Здесь два диода включены параллельно, но в противоположных направлениях. Один диод начинает работать при высоком уровне выходного сигнала, другой — при низком уровне вывода. Когда выход высокий, D1 диод начинает работать. Аналогично, когда выход низкий, D2 действует. Таким образом, схема переходит на высокий и низкий логический уровень и генерирует прямоугольный сигнал.

Период времени T=2RC ln (2R1+R2/R2)

ОБЩЕЕ ОПИСАНИЕ ГЕНЕРАТОРА ИМПУЛЬСОВ

Генератор импульсов на базе микроконтроллера PIC12F675 предназначен для формирования прямоугольных логических импульсов регулируемой длительности.

Имеет гибкую настройку, широкий диапазон выходных частот и управление, которые делают применение этой микросхемы удобным для широкого круга задач. Благодаря своей компактности и автономности позволяет существенно упростить электронные схемы, имеющие узлы генерации частоты, сделать их более точными, наделить их дополнительными функциями, уменьшить площадь печатных плат.

Назначение выводов микросхемы (см. рисунок выше):

Вывод
Обозначение
Тип
Описание
1 Vdd Пит. Питание (диапазон напряжений питания указан ниже).
2 Pulses Выход Генерируемые импульсы.
3 IdleState Вход Задание состояния покоя выхода Pulses (при выключенной генерации): – при выключенной генерации выход Pulses находится в состоянии «0»;1
– при выключенной генерации выход Pulses находится в состоянии «1»;соединён с выходом Pulses
– при отключении генерации выход Pulses будет оставаться в том состоянии, в котором он был на момент её отключения (после включения питания состояние Pulses будет неопределено).
Смена состояния входа IdleState при выключенной генерации приводит к немедленной смене состояния выхода Pulses (работает как повторитель). При этом время реакции на смену сигнала IdleState – до 100 мкс.
4 Run Вход Разрешение генерации импульсов: 1 – включена, 0 – выключена.
При переходе Run из 0 в 1 выход Pulses немедленно изменяет своё состояние на противоположное (фронт первого импульса).
При переходе Run из 1 в 0 выход Pulses немедленно переходит в состояние покоя (текущий импульс по длительности не завершается).
Время реакции на смену сигнала Run – до 100 мкс, в «медленном режиме» – до 500 мкс.
5 M1 Вход Выбор режима работы (M1:M0):0:0
– напряжение, быстрый режим.0:1
– напряжение, средний режим.1:0
– напряжение, медленный режим.1:1
– USART/Flash.
Режим работы может изменяться «на ходу», при этом желательно, чтобы ножки M0 и M1 меняли состояние одновременно. Время реакции на смену сигналов M1 и M0 обычно не превышает нескольких мкс.
Если генератор всегда используется в одном и том же режиме, ножки M0 и M1 можно притянуть к Vdd и Vss в соответствии с требуемым режимом.
6 M0 Вход
7 Ur / RX Вход В режиме напряжения
– аналоговый вход Ur (задаёт длительность импульсов: Vss – минимальная, Vdd – максимальная).В режиме USART
– цифровой вход RX (линия связи).В режиме Flash
– цифровой вход RX, должен быть притянут к Vdd.
8 Vss Земля «Земля» питания и логики.

Рекомендуется (не является обязательной) установка конденсатора ёмкостью 1–10 мкФ между линиями Vdd и Vss в непосредственной близости от микросхемы, особенно при управлении длительностью импульсов с помощью напряжения (способствует снижению помех на линии питания).

Модели с кварцевой стабилизацией

Схема генератора импульсов данного типа предусматривает использование только бесконденсаторного адаптера. Все это необходимо для того, чтобы показатель возбуждения колебаний был как минимум на уровне 4 мс. Все это позволит также сократить термальные потери. Конденсаторы для устройства подбираются исходя из уровня отрицательного сопротивления. Дополнительно необходимо учитывать тип блока питания. Если рассматривать импульсные модели, то у них уровень выходного тока в среднем находится на отметке 30 В. Все это в конечном счете может привести к перегреву конденсаторов.

Чтобы избежать таких проблем, многие специалисты советуют устанавливать стабилитроны. Припаиваются они непосредственно на адаптер. Для этого необходимо прочистить все контакты и проверить напряжение катода. Вспомогательные адаптеры для таких генераторов также используются. В этой ситуации они играют роль коммутируемого трансивера. В результате параметр возбуждения колебаний повышается до 6 мс.

Генератор прямоугольных импульсов с использованием триггера Шмитта

Работа схемы генератора прямоугольных импульсов триггера Шмитта очень похожа на реализацию логического элемента И-НЕ. Схема триггера Шмитта показана на рисунке 9. Здесь также сеть RC обеспечивает синхронизацию. Инвертор принимает свой выход в виде обратной связи как один из входов.

Первоначально входное напряжение затвора НЕ меньше минимального порогового напряжения. Таким образом, выходное состояние — High. Теперь конденсатор начинает заряжаться через резистор R1. Когда напряжение на конденсаторе достигает максимального порогового напряжения, выходное состояние снова становится низким. Этот цикл повторяется снова и снова и генерирует прямоугольную волну. Частота прямоугольной волны находится как f=1/1.2RC

Рисунок печатной платы

Характеристики генератора:
Частотный диапазон: 11 Гц — 60 кГц Цифровая регулировка частоты с 3 различными шагами Форма сигнала: синус, треугольный, прямоугольный, пульс, пакетный, sweep, шум Выходной диапазон напряжения: ± 15В для синуса и треугольника, 0-5В для других Синхронизация: выход для импульсного сигнала.

Устройство питается от 12-вольтового трансформатора, который обеспечивает достаточно высокое (более 18 В) постоянное напряжение, необходимое для нормальной работы стабилизаторов 78L15 и 79L15. Питание в ±15 В необходимо для того, чтобы ОУ LF353 на выходе давал полный спектр сигналов при 1кОм нагрузки. При использовании питания ±12 В этот резистор должен быть не менее 3 кОм.

Датчик вращения (поворотный энкодер) который я использовал – ALPS SRBM1L0800 в виде двух переключателей в круге на схеме. Автор, вероятно, использовал другой, так что некоторые изменения в коде программы контроллера были необходимы. Мой датчик имеет две группы контактов: ВЫКЛ и ВКЛ (когда ротор перемещается в соответствующем направлении). Таким образом, изменение прерывания PORTB должны быть созданы, если одна из пар контактов коротится. Это достигается за счет подключения обоих групп контактов на контакты PIC16 (RB4 — RB7), которые проверяются программой на изменение состояния. К счастью, RB4 не был использован в оригинальном дизайне, так что я просто перенаправлен RB3 на RB4. Другая модификация вызвана использованием поворотного энкодера, потому я немного изменил прерывания микропрограммы. Я заставил регулятор, сохранять состояние в течении 100 последовательных измерений вместо 10 в оригинальном дизайне. Заметим, что некоторые ножки PIC используются для перенаправления +5 В для упрощения компоновки печатной платы, поэтому они настроены в качестве входов портов.

Печатная плата предусматривает три резисторных сборки. Одна – R/2R – для ЦАП из Bourns 4310R серии. Сборка ЦАП резисторов может быть построена и на дискретных резисторах по схеме выше. Следует использовать резисторы с допуском до ± 1% или лучше. Светодиодные ограничительные резисторы серии Bourns 4306R. Яркость светодиодов может быть увеличена изменением сопротивления ограничительных резисторов до 220 – 330 Ом.

Генератор собран в 179x154x36 мм пластиковом корпусе с алюминиевыми передней и задней панелями. Уровень выходного сигнала регулируется переменным резистором Alfa 1902F серии. Все другие компоненты устанавливаются на передней и задней панелях (кнопки, разъемы, светодиодные сборки, разъем питания). Платы крепятся к корпусу болтами в 6мм с пластиковыми прокладками.

Генератор производит 9 различных форм сигналов и работает в трех режимах, которые выбираются с помощью кнопки «Выбрать (Select)» и их индикация выводится на трех верхних (по схеме) светодиодах. Датчик вращения корректирует параметры сигнала в соответствии со следующей таблицей:

Сразу после включения генератор переходит в режим 1 и генерирует синус. Тем не менее, начальная частота довольно низкая и по крайней мере одного щелчка регулятора хватит, чтобы увеличить ее.

P.S. От себя добавлю: при повторении устройства с авторской печатной платой прибор отказался заводиться (возможно на печатной плате есть ошибка), а при монтаже на макетной плате – генератор начал работать сразу.

Ниже вы можете скачать исходники asm, прошивку и файлы печатных плат (Eagle)

Скачать архив:

У вас нет доступа к скачиванию файлов с нашего сервера

Краткие характеристики:

·

Три способа задания длительности импульсов: напряжение (в т. ч. потенциометр); USART; настройки во Flash-памяти.

·

Диапазоны генерируемых частот:

– по напряжению – от менее 1 Гц до 10 кГц (три диапазона);

– по USART/Flash – от 0.11 Гц до 7.246 кГц.

·

Включение/выключение генерации; управление состоянием покоя.

·

Полностью автономен, не нуждается в дополнительных компонентах (кварцевом резонаторе, источниках опорной частоты и др.).

Возможные применения:

·

Управляемый или неуправляемый частотозадающий узел, встраиваемый в электронное оборудование (задающий генератор).

·

Управление световой индикацией с прерывистым режимом работы.

·

Синтезатор звуковых частот.

·

Имитатор сигналов для отладки электронного оборудования.

ЗАКАЗ МИКРОКОНТРОЛЛЕРА С ПРОГРАММОЙ

ВНИМАНИЕ! У нас Вы можете приобрести микроконтроллер PIC12F675 с уже прошитой программой генерации частоты по фиксированной цене – 450 рублей!

При заказе более 5 штук цена снижается; для оптовых партий цена в несколько раз ниже (зависит от размера партии: заполните форму ниже, чтобы узнать цену).

При желании вы также можете самостоятельно приобрести чистый контроллер PIC12F675 в розничной торговой сети и заказать у нас только его прошивку (стоимость по общему тарифу).

При заказе Вы можете указать настройки, зашиваемые во Flash-память (длительности импульсов, режим работы, конфигурацию выводов Run и IdleState) для работы генератора импульсов в режиме Flash. Конфигурирование микросхем по Вашим пожеланиям осуществляется совершенно бесплатно при любом объёме заказа (от 1 штуки).

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: