Логические триггеры: схемы, классификация, устройство, назначение, применение

Jk-триггер. принцип работы, фунцкциональные схемы, таблицы истинности

Т-триггер. Принцип работы, функциональные схемы

Триггер – простейшее устройство, представляющее собой цифровой автомат. Оно имеет два состояния устойчивости. Одному из этих состояний присваивается значение «1», а другому «0». Состояние устройства, а также значение двоичной информации, которая в нем хранится, определяется выходными сигналами: прямым и инверсным. В том случае, когда на прямом выходе установится потенциал, который соответствует логической единице, в таком случае состояние триггера называется единичным (при этом потенциал на инверсном выходе соответствует логическому нулю). Если же на прямом выходе нет потенциала, то состояние триггера называется нулевым.

Классифицируют триггеры по следующим признакам:

1. По способу записываемой информации (асинхронные и синхронные).

2. По способу управлением информацией (статистические, динамические, одноступенчатые, многоступенчатые).

3. По способу реализации логических связей (JK-триггер, RS-триггеры,Т-триггер, D-триггер и других типов).

Основными параметрами всех типов триггеров являются: максимальная длительность входного сигнала, время задержки необходимого для переключения триггера, а также разрешающее время срабатывания.

В этой статье поговорим о таком типе устройств, как – Т-триггер. Такие триггеры имеют всего один информационный (Т) вход, который называют счетным входом. Он изменяет свое исостояние после поступления на счетный (Т) вход каждого управляющего сигнала.

Согласно таблицы переходов, закон функционирования таких триггеров описывается характеристическим уравнением: Q(t+1)=TtQ’t V T’tQt. Из уравнения следует, что при поступлении на вход (Т) логического нуля, Т-триггер сохранит свое состояние, а при подаче логической единицы, изменит на противоположное.

Qt Tt Q(t+1)
1 1
1 1
1 1

Из таблицы видно, что Т-триггер выполняет операцию сложения, это и обусловило название такого триггера счетным, его информационный (Т) вход– счетным входом. Уровень сигнала на входе такого триггера появляется в два раза чаще, чем на его выходе (Q). Соответственно Т-триггер используют в качестве делителя частоты.

Т-триггер асинхронного типа может быть сконструирован на базе двухступенчатого триггера RS с дополнительными связями, а именно: выход триггера (Q) необходимо соединить со входом (R), а выход (Q’) со входом (S). Информационным входом (Т) будет являться синхронный вход (С).

На фото изображен Т-триггер. Схема функциональная.

В исходном состоянии на информационных входах триггера (R и S) подается уровень логического нуля, при подаче на счетный (Т) вход логического нуля, будет происходить постоянное копирование состояния первого триггера вторым триггером, потому что элемент И-НЕ будет выдавать уровень логической единицы на вход второго триггера. Если Т-триггер находился в состоянии единицы, то на входы (R и S) будет подаваться уровни нуля и единицы соответственно. При поступлении на счетный вход первого сигнала равного логической единице, в первый триггер запишется логическая единица. Состояние же второго триггера не изменяется, потому что уровень нуля с выхода логического элемента И-НЕ блокирует его состояние. После снятия счетного импульса на входе (Т) устанавливается нуль, и второй триггер переключается в состояние логической единицы.

На фото синхронный T-триггер. Схема функциональная.

Синхронные Т-триггеры используют в случае необходимости представлять потенциалом последовательность логической единицы на входе Т-триггера.

D триггеры, работающие по фронту.

Фронт сигнала синхронизации, в отличие от высокого (или низкого) потенциала, не может длиться продолжительное время.
В идеале длительность фронта равна нулю. Поэтому в триггере, запоминающем входную информацию по фронту не нужно предъявлять
требования к длительности тактового сигнала.

Триггер, запоминающий входную информацию по фронту, может быть построен из двух триггеров, работающих по потенциалу.
Сигнал синхронизации будем подавать на эти триггеры в противофазе. Схема такого триггера приведена на рисунке 15.

Рассмотрим работу схемы динамического триггера, приведенной на рисунке 15 подробнее. Для этого воспользуемся
временными диаграммами, показанными на рисунке 13. На этих временных диаграммах обозначение Q΄ соответствует
сигналу на выходе первого триггера. Так как на вход синхронизации второго триггера тактовый сигнал поступает через
инвертор, то когда первый триггер находится в режиме хранения, второй триггер пропускает сигнал на выход схемы. И
наоборот, когда первый триггер пропускает сигнал с входа схемы на свой выход, второй триггер находится в режиме
хранения.

Обратите внимание, что сигнал на выходе всей схемы в целом не зависит от сигнала на входе «D» схемы. Если первый
триггер пропускает сигнал данных со своего входа на выход, то второй триггер в это время находится в режиме хранения
и поддерживает на выходе предыдущее значение сигнала, то есть сигнал на выходе схемы тоже не может измениться.. В результате проведённого анализа временных диаграмм мы определили, что сигнал в схеме, приведенной на рисунке 15
запоминается только в момент изменения сигнала на синхронизирующем входе «C» с единичного потенциала на нулевой.

В результате проведённого анализа временных диаграмм мы определили, что сигнал в схеме, приведенной на рисунке 15
запоминается только в момент изменения сигнала на синхронизирующем входе «C» с единичного потенциала на нулевой.

Динамические D триггеры выпускаются в виде готовых микросхем или входят в виде готовых блоков в составе больших
интегральных схем, таких как базовый матричный кристалл (БМК) или программируемых логических интегральных схем (ПЛИС).

Условно-графическое обозначение D триггера, запоминающего информацию по фронту тактового сигнала,
приведено на рисунке 12.

То, что триггер запоминает входной сигнал по фронту, отображается на условно-графическом обозначении треугольником,
изображённым на выводе входа синхронизации. То, что внутри этого триггера находится два триггера, отображается в среднем
поле условно-графического изображения двойной буквой T.

Иногда при изображении динамического входа указывают, по какому фронту триггер (или триггеры) изменяет своё состояние.
В этом случае используется обозначение входа, как это показано на рисунке 18.

Рисунок 18. Обозначение динамических входов

На рисунке 18 а обозначен динамический вход, работающий по переднему (нарастающему) фронту сигнала. На рисунке 18 б
обозначен динамический вход, работающий по заднему (спадающему) фронту сигнала.

Промышленностью выпускаются готовые микросхемы, содержащие динамические триггеры. В качестве примера можно назвать
микросхему 1533ТМ2. В этой микросхеме содержится сразу два динамических триггера. Они изменяют своё состояние по
переднему фронту сигнала синхронизации
.

Дата последнего обновления файла
09.03.2020

Электронный переключатель двух нагрузок

Но не всегда требуется именно выключатель, бывает что нужен переключатель. На рисунке 2 показана схема электронного переключателя двух нагрузок. Главное отличие от схемы на рис.1 в том, что здесь два мощных полевых транзистора.

Для того чтобы в момент подключения источника питания схема устанавливалась в одно известное положение, то есть, в данном случае, нагрузка 1 выключена, нагрузка 2 включена, здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние. То есть, на его прямом выходе — единица, на инверсном — ноль.

При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, питание на нагрузку 1 не поступает. А напряжение между истоком и затвором транзистора VТ2 будет достаточным для его открывания, и транзистор откроется, поступит питание на нагрузку 2.

Рис. 2. Схема простого самодельного электронного переключателя двух нагрузок.

При этом, нуль с инверсного выхода триггера через резистор R3, с небольшой задержкой, поступает на вход «D» триггера. Теперь, при нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в логический нуль.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ 1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку 1 поступает питание.

Но транзистор VТ2 при этом закрывается, и нагрузка 2 выключается. Таким образом, при каждом нажатии кнопки S1 происходит переключение нагрузок.

Несколько слов, о назначении цепи C2-R3 в схемах на рис.1 и рис.2. Дело в том, что кнопка -это механические контакты, которые соединяются механически, и здесь практически не возможно обойтись без дребезга контактов. И чем больше износ кнопки, тем сильнее проявляется дребезг её контактов.

Поэтому, как при нажатии кнопки, так и при её отпускании, может формировать не один импульс, а целая серия коротких импульсов. И это может привести к многократному переключению триггера, и в результате, установке его в произвольное состояние. Чтобы такого не происходило здесь есть цепь C2-R3.

Она несколько задерживает приход логического уровня с инверсного выхода триггера на его вход «D». Поэтому, пока длится дребезг контактов, напряжение на входе «D» не меняется, и импульсы дребезга на состояние триггера не влияют.

Физические реализации триггеров

Базовый элемент создают из полупроводниковых приборов, используя современные технологические процессы для миниатюризации функциональных изделий.


Логический элемент на МОП транзисторах

Триггеры с тиристорами

Для повышения мощности подключаемой нагрузки можно собрать триггер с применением тиристоров. К управляющему электроду присоединяют вход S, к затвору – R. Для поддержания постоянного напряжения на аноде подойдет транзистор, включенный в соответствующую цепь.

Триггеры на релейно-контакторной базе

Несмотря на общие тенденции миниатюризации, вполне допустимо создать функциональный триггер из реле. Подобные решения, в частности, применяют для защиты цепей питания при включении мощных электроприводов.

Классификация

Энергия конденсатора

Изделия этой категории разделены на две основные группы по принципу сигналов управления. В первой – формируется заданная последовательность выходных сигналов, если установлено состояние «1». После переходе в «0» генерация прекращается. Вторая – способна переключать выходное напряжение соответствующим образом. Как правило, «1» примерно соответствует уровню источника питания.

Также триггеры различают по следующим параметрам:

  • синхронность рабочих циклов;
  • статические (динамические) способы управления;
  • сложность логических схем;
  • одно,- или двухступенчатые.

Триггеры на логических элементах и на операционном усилителе

Для реализации статических триггеров хорошо подходит схема усилителя с двумя каскадами. Связь между ними организуют прямую либо с ограничительными резисторами в соответствующих цепях.


Триггер на логических элементах

Триггер (Trigger) Шмитта

Изделия этой категории могут быть созданы с применением разной элементной базы. В данном разделе рассмотрен триггер Шмитта на транзисторах. Он управляется изменением аналогового сигнала. В зависимости от уровня напряжения, выполняется переключение состояния памяти в соответствующее положение «0» или «1».


Триггер Шмидта на транзисторах с подключенной нагрузкой

Краткие теоретические сведения

Триггеры предназначены для запоминания двоичной информации. Использование триггеров позволяет реализовывать устройства оперативной памяти (то есть памяти, информация в которой хранится только на время вычислений).

Однако триггеры могут использоваться и для построения некоторых цифровых устройств с памятью, таких как счётчики, преобразователи последовательного кода в параллельный или цифровые линии задержки.

RS-триггер

Основным триггером, на котором базируются все остальные триггеры является RS-триггер. RS-триггер имеет два логических входа:

  • R – установка 0 (от слова reset);
  • S – установка 1 (от слова set).

RS-триггер имеет два выхода:

  • Q – прямой;
  • Q- обратный (инверсный).

Состояние триггера определяется состоянием прямого выхода. Простейший RS-триггер состоит из двух логических элементов, охваченных перекрёстной положительной обратной связью.

Рассмотрим работу триггера:

Пусть R=0, S=1. Нижний логический элемент выполняет логическую функцию ИЛИ-НЕ, т.е. 1 на любом его входе приводит к тому, что на его выходе будет логический ноль Q=0. На выходе Q будет 1 (Q=1), т.к. на оба входа верхнего элемента поданы нули (один ноль – со входа R, другой – с выхода ). Триггер находится в единичном состоянии. Если теперь убрать сигнал установки (R=0, S=0), на выходе ситуация не изменится, т.к. несмотря на то, что на нижний вход нижнего логического элемента будет поступать 0, на его верхний вход поступает 1 с выхода верхнего логического элемента.

Будет интересно Что такое статическое электричество и как от него избавиться

Триггер будет находиться в единичном состоянии, пока на вход R не поступит сигнал сброса. Пусть теперь R=1, S=0. Тогда Q=0, а =1. Триггер переключился в “0”. Если после этого убрать сигнал сброса (R=0, S=0), то все равно триггер не изменит своего состояния. Для описания работы триггера используют таблицу состояний (переходов). Обозначим:

  • Q(t) – состояние триггера до поступления управляющих сигналов (изменения на входах R и S);
  • Q(t+1) – состояние триггера после изменения на входах R и S.

Таблица переходов RS триггера в базисе ИЛИ-НЕ

R S Q(t) Q(t+1) Пояснения
Режим хранения информации R=S=0
1 1
1 1 Режим установки единицы S=1
1 1 1
1 Режим установки нуля R=1
1 1
1 1 * R=S=1 запрещённая комбинация
1 1 1 *

RS-триггер можно построить и на элементах “И-НЕ” (рисунок 2.2).

Входы R и S инверсные (активный уровень “0”). Переход (переключение) этого триггера из одного состояния в другое происходит при установке на одном из входов “0”. Комбинация R=S=0 является запрещённой.

Таблица переходов RS триггера в базисе “2И-НЕ”

R S Q(t) Q(t+1) Пояснения
* R=S=0 запрещённая комбинация
1 *
1 Режим установки нуля R=0
1 1
1 1 Режим установки единицы S=0
1 1 1
1 1 Режим хранения информации R=S=1
1 1 1 1

Синхронный RS-триггер

Схема RS-триггера позволяет запоминать состояние логической схемы, но так как при изменении входных сигналов может возникать переходный процесс (в цифровых схемах этот процесс называется “опасные гонки”), то запоминать состояния логической схемы нужно только в определённые моменты времени, когда все переходные процессы закончены, и сигнал на выходе комбинационной схемы соответствует выполняемой ею функции. Это означает, что большинство цифровых схем требуют сигнала синхронизации (тактового сигнала).

Все переходные процессы в комбинационной логической схеме должны закончиться за время периода синхросигнала, подаваемого на входы триггеров. Триггеры, запоминающие входные сигналы только в момент времени, определяемый сигналом синхронизации, называются синхронными. Принципиальная схема синхронного RS триггера приведена.

Таблица переходов синхронного RS-триггера

R S C Q(t) Q(t+1) Пояснения
1 Режим хранения информации R = S = 0
1 1 1
1 1 1 Режим установки единицы S =1
1 1 1 1
1 1 Режим установки нуля R=1
1 1 1
1 1 1 * R = S = 1 запрещённая комбинация
1 1 1 1 *

В таблице 2.3. под сигналом С подразумевается синхроимпульс. Без синхроимпульса синхронный RS триггер сохраняет своё состояние.

Триггер цифровой техники

Под триггером цифровая техника понимают простейший автомат с двумя состояниями. Переход меж ними задается функцией, сообразно которой выделяют разновидности (RS, D, T, JK). В схемах триггер изображается чаще прямоугольной рамкой-телом, снабженной несколькими входами, парой выходов (вида боковых ножек), ставится буква из приведенных выше. Иногда устройство синхронное. Тогда ко входам добавляется буква С, ловящая тактовые импульсы. Прочие триггеры асинхронные.

Элемент типа RS

В зависимости от реализуемой функции различают разновидности устройств:

  1. RS предназначаются управлять выходом при помощи двух входов. Первый послужит целям установки единицы, переводится Set. Триггер устанавливается в нулевое состояние путем активации входа R (Reset).
  2. D (data, delay) триггер запоминает значение собственного входа, выступает устройством задержки. Если вариант устройства синхронный, значение передается на выход следующим тактом.
  3. Т (toggle) триггер умеет вести счет в двоичной системе. Выход попеременно становится 0-1 с приходом каждой единицы на счетный вход. Иногда называют делителем частоты (на 2).

Покажется удивительным, на базе бедного набора функций удается собрать сложные конгломераты. В природе встречаются JK-триггеры, называемые универсальными. За счет специфической конструкции допускают подачу на оба входа логических единиц, подобное неспособны пережить RS-триггеры. JK-триггер реализует концепцию счетчика. В других ситуациях поведение подобное RS. Давайте рассмотрим подробнее элементы цифровой техники.

История

Функциональный триггер можно создать из обычного реле с электромеханическим приводом. Установив нужным образом контакты управляющей цепи, обеспечивают включение силовой группы после определенной комбинации входных сигналов. Отдельной клавишей выполняют сброс.


Схема RS триггера на одном реле

Электронные аналоги были собраны в начале прошлого века из ламповых приборов. Действующие схемы впервые опубликованы российскими и английскими учеными в 1918-20 гг. Позднее стали применять полупроводниковые транзисторы. В наши дни соответствующие устройства создают с применением микроэлектронных технологий.

Временные диаграммы

Скважность импульсов

Таблицы истинности иногда не являются лучшим методом описания последовательной схемы. Часто предпочтительнее временная диаграмма синхронизации, которая показывает, как логические состояния в разных точках цепи меняются со временем.


Временная диаграмма RS триггера

На рисунке видно, что в первый момент времени t1 оба сигнала высокие, что вызывает неопределенное состояние. Затем от t1 до t2 S равно 0, R равно 1 на выходе Q устанавливается 1. Еще два неопределенных состояния: от t2 до t3 и от t4 до t5. На промежутке t3-t4 происходит сброс схемы в 0 на выходе Q. А в пределах t6-t7 – недопустимое состояние схемы, когда R и S равны 0.

Транзисторный триггер Шмитта Принцип работы

от Dejan

Электротехника

В предыдущем уроке мы объяснили, что такое триггер Шмитта и как он работает с использованием операционных усилителей. Теперь в этом уроке мы объясним триггер Шмитта на основе транзистора.

Вы можете посмотреть следующее видео или прочитать письменный учебник ниже.

Триггер Шмитта представляет собой тип логического входа, который обеспечивает гистерезис или два разных уровня порогового напряжения для нарастающего и спадающего фронта. Это полезно, потому что позволяет избежать ошибок, когда у нас есть шумные входные сигналы, из которых мы хотим получить прямоугольные сигналы. Схема транзисторного тригера Шмитта содержит два транзистора и пять резисторов. Для лучшего объяснения я назначу значения компонентам, а позже продемонстрирую и соберу эту схему на макетной плате, чтобы увидеть, как она работает на самом деле.

Начнем так. Предположим, что на входе Vin 0 В. Это означает, что транзистор T1 отключен и не проводит ток. С другой стороны, транзистор T2 является проводящим, потому что у нас есть напряжение около 1,98 В в узле B, поскольку мы можем рассматривать эту часть схемы как делитель напряжения и вычислять напряжение, используя эти выражения.

Таким образом, поскольку транзистор T2 является проводящим, выходное напряжение будет низким, а напряжение на эмиттере будет примерно на 0,7 В ниже, чем напряжение на базе транзистора, или примерно на 1,28 В.

Эмиттер транзистора Т1 соединен с эмиттером транзистора Т2 так, что они находятся на одном уровне напряжения 1,28 В, что означает, что транзистор Т1 включится, когда напряжение Vin на его базе будет на 0,7 В выше этого значение 1,28 В, или около 1,98 В.

Таким образом, когда мы увеличиваем вход Vin и пересекаем это значение 1,98, транзистор T1 начинает проводить. Это вызовет падение напряжения на базе транзистора T2 и отключит транзистор. Поскольку транзистор T2 больше не проводит ток, выходное напряжение становится высоким.

Далее напряжение Vin на базе транзистора Т1 начнет снижаться и закроет транзистор, когда напряжение базы будет на 0,7 В выше напряжения его эмиттера. Это произойдет, когда ток в эмиттере снизится до точки, при которой транзистор перейдет в режим прямой активности.

В этом режиме увеличится напряжение коллектора, что также увеличит напряжение на базе транзистора Т2. Это вызовет протекание небольшого количества тока через транзистор T2, что приведет к дальнейшему падению напряжения на эмиттерах и вызовет закрытие транзистора T1. В нашем случае входное напряжение Vin должно упасть примерно до 1,3 В, чтобы закрыть транзистор T1.

Вот и все. Теперь цикл повторяется снова и снова. Таким образом, мы получили два порога, верхний порог около 1,9 В и нижний порог около 1,3 В.

Демонстрация этой схемы на макетной плате и ее можно найти в конце видео, прикрепленного выше.

Синхронные и асинхронные триггеры

Эти группы созданы по принципу зависимости состояний выхода от синхроимпульсов.

Асинхронные триггеры

Изделия данного типа изменяют состояние хранящейся информации после поступления соответствующих данных на вход. Незначительная задержка объясняется временем прохождения сигнала по цепи переключающих элементов схемы.

Синхронные триггеры с динамическим тактированием

В этой группе представлены изделия, управляемые синхроимпульсами. Переключение состояния выполняется по переднему или заднему фронту. При отсутствии активности на C данные сохраняются в неизменном состоянии, вне зависимости от поступления новой информации.

D-триггер

D-триггер (от англ. delay) запоминает входную информацию при поступлении синхроимпульса.

Хранение информации в D-триггерах обеспечивается за счет синхронизации, поэтому все реальные D-триггеры имеют два входа: информационный D и синхронизации С (рис. 12). Под действием синхросигнала С информация, поступающая на вход D, принимается в триггер, но на выходе Q появляется с задержкой на один такт. В D-триггере с динамическим входом прием в триггер информации со входа D происходит в момент смены на входе С уровня 0 на уровень 1.

Рис. 12 — Схема D-триггера

Таблица 3

Таблица состояний D-триггера
C D Qt+1
1
1 1 1

Условное графическое обозначение D-триггера показано на рис. 13.

Рис. 13 — Условное графическое обозначение D-триггера

Так как информация на выходе остается неизменной до прихода очередного импульса синхронизации, D-триггер называют также триггером с запоминанием информации или триггером-защелкой. Легче всего объяснить появление этого названия по временной диаграмме, приведенной на рисунке 14.

Рис. 14 — Временная диаграмма D-триггера

По этой временной диаграмме видно, что триггер-защелка хранит данные на выходе только при нулевом уровне на входе синхронизации. Если же на вход синхронизации подать активный высокий уровень, то напряжение на выходе триггера будет повторять напряжение, подаваемое на вход этого триггера. Входное напряжение запоминается только в момент изменения уровня напряжения на входе синхронизации C с высокого уровня на низкий уровень. Входные данные как бы «защелкиваются» в этот момент. Отсюда и название — триггер-защелка.

Принципиально в этой схеме входной переходной процесс может беспрепятственно проходить на выход триггера

Поэтому там, где это важно, необходимо сокращать длительность импульса синхронизации до минимума. Чтобы преодолеть такое ограничение были разработаны триггеры, работающие по фронту

Схема такого триггера приведена на рисунке 15, а обозначение на принципиальных схемах на рисунке 16.

Рис. 15 — Схема универсального D-триггера

Рис. 16 — Обозначение универсального D-триггера на принципиальных
схемах

На рис. 17 представлено условное обозначение D-триггера микросхемы К155ТМ2, содержащей два D-триггера. Входы R и S выполняют те же функции, что и в RS-триггере.

Рис. 17 — D-триггер микросхемы К155ТМ2

D-триггер несложно преобразовать в счетный триггер, т. е. такой, состояние которого изменяется после поступления очередного импульса на счетный вход. Для обеспечения счетного режима необходимо вход D соединить с инверсным выходом триггера (рис. 18,а). Из логики работы
D-триггера следует, что после прихода импульса на вход С состояние
триггера будет изменяться на противоположное. Это иллюстрируется
временными диаграммами, или эпюрами напряжений (рис. 18,б). Подобно
таблице истинности, эпюры напряжений дают наглядное представление о работе
устройства.

Рис. 18 — Работа D-триггера в счетном режимеа) — соединение выводов, б) — временные диаграммы

Необходимо отметить, что изменение состояния D-триггера данного типа происходит при изменении напряжения на счетном входе с низкого уровня на высокий. Такое изменение
напряжения часто называют положительным перепадом напряжения или фронтом импульса. Реакцию триггера на положительный перепад напряжения отображают
косой чертой, пересекающей линию входа С (рис. 18,а). Аналогично
изменение напряжения с высокого уровня на низкий называют отрицательным
перепадом напряжения, спадом или срезом импульса. На схемах это отображают
также косой чертой, но повернутой на 90° относительно показанной на
рисунке 18,а. В зависимости от своей внутренней структуры триггер реагирует или
на положительный, или на отрицательный перепад напряжения.

Триггер Шмитта на транзисторе и оптроне

     Триггер, это устройство, имеющее два устойчивых состояния и способное под действием управляющего сигнала скачком переходить из одного устойчивого состояния в другое. Передаточная характеристика триггера представляет собой практически прямоугольную петлю гистерезиса с пороговыми уровнями напряжения, при которых происходит переключение триггера из одного устойчивого состояния в другое.

     В отсутствии гистерезиса при входных медленно изменяющихся напряжениях, будет наблюдаться многократное переключение триггера (дребезг), что крайне не желательно. Гистерезис увеличивает стабильность работы триггера при напряжениях близких к пороговому. Триггер Шмитта, как нельзя лучше подходит для формирования фронтов и спадов импульсов управления мощными транзисторами.Чем круче фронты и спады импульсов, тем меньше коммутационные потери транзистора, тем меньше рабочая температура транзистора при одинаковой коммутируемой мощности. При использовании триггера Шмитта для управления полевыми транзисторами, коммутирующими нагрузку в сети переменного тока 220В, последний не плохо бы гальванически развязать от блока управления, что повысит электробезопастность устройства.

Для этого первый транзистор в схеме триггера Шмитта заменим транзистором из оптрона (см. рис 1), например АОТ128, имеющим время нарастания и спада импульса выходного тока 5 мксек. Ниже приведены данные по времени нескольких популярных импортных оптронов. Как видим, время нарастания и спада тоже многовато.В своем эксперименте в качестве оптрона я использовал 4N35 фирмы MOTOROLA. В качестве транзистора VT1 был выбран КТ3102Б. При указанных на схеме номиналах элементов и при напряжении питания 12В, триггер имел следующие показатели. Напряжение логического нуля на выходе триггера, это когда ток через светодиод оптрона отсутствует, составляет 1,3В. Напряжение логической единицы — через светодиод оптрона течет ток — 11,9В. В моем случае триггер срабатывает при входном токе через светодиод 11мА. Но, конечно, этот ток надо выбирать больше. У меня он был выбран около 20 мА, притом, что максимальный ток светодиода данного оптрона составляет 60 мА.

Триггер что это такое

Общие принципы запоминающих элементов представлены выше. Триггером называется устройство, способное поддерживать 2 или больше устойчивых состояния, которые меняются под воздействием входных сигналов. Фактически речь о способе хранения минимального количества информации – 1 бит.

Что измеряется в фарадах

Любой триггерный автомат состоит из двух основных блоков. Первый – предназначен для сравнения или другого вида обработки входных сигналов. Второй – обеспечивает хранение данных и отображение состояния соответствующими выходными сигналами:

  • «1» – высокий уровень, прямой, Q;
  • «0» – низкое напряжение, обратный (инверторный), /Q.

Как правило, между функциональными блоками организована обратная связь. Входные сигналы также делят на группы:

  • информационные – R, T, S;
  • управляющие – V, C.

К сведению. Рабочие циклы описывают в табличной форме, которая наглядно показывает состояние памяти при разных комбинациях входных сигналов.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: