Линии с изолированной нейтралью

Зануление и заземление: в чем разница по области применения

Главное правило – оба вида защиты одновременно применять нельзя. Если есть возможность заземления, то зануление не рассматривается, как возможный вариант. В каких же случаях монтируется тот или иной вид? Сейчас узнаем.

Когда выполняется заземление оборудования

В многоквартирных домах контур заземления устраивается вокруг, либо по двум сторонам здания. Исключение составляют только дома старой постройки – в них контур может отсутствовать. В частных домах устройство контура ложится на плечи домовладельца. Как выглядит, каким образом монтируется заземляющее устройство, мы рассмотрим ниже.

Контур заземления имеет вид треугольника – это наиболее оптимально

Статья по теме:

УЗО, что это такое и для чего он нужен? Что выбрать УЗО или дифференциальный автомат? Как подключаем устройство к однофазной сети с заземлением и без него? Как правильно выбрать аппарат для защиты дома? Ответы на эти вопросы Вы узнаете из нашего обзоре.

Полезно знать! Заземление считается более надежным способом защиты, но при расключении вводного электрощита и разводке проводки внутри помещений нужно быть крайне внимательным. Нигде заземление не должно соприкасаться с нейтралью. Если такое произойдет, установленные устройства защитного отключения (УЗО) будут срабатывать без причины.

Что такое защитное заземление, где оно применяется, разобрались. А что со вторым видом?

Когда применяется защитное зануление в квартире

Такой вид защиты применим, при условии отсутствия заземления. Обычно это многоквартирные дома старой постройки. Используя такой вид защиты, необходима установка автоматов и УЗО. Выполняется оно следующим образом.

Такие дома не имеют контура заземления. Здесь придется обойтись занулением

Нулевой провод до подключения к УЗО выводится на отдельную шину, от которой и будет идти желто-зеленый провод глухозаземленной нейтрали. Основной ноль разводится по УЗО и следует в квартиру. Самый простой вариант – на разводку квартиры идет трехжильный кабель, два провода которого (фаза и ноль) проходят через защитную автоматику, а один (глухозаземленная нейтраль) напрямую. Он соединяется на заземляющие контакты розеток и осветительных приборов.

Так выглядит глухозаземленная нейтраль на трансформаторной подстанции

TN-S: эффективно, но дорого

TN-S, в сравнении с системой заземления TN-C представляет собой более современную, эффективную и безопасную систему, в которой глухозаземленная нейтраль трансформатора (либо генератора) применяется для подключения проводников с «нулём» на стороне источника тока. При её использовании исключен риск возникновения высокого напряжения на корпусах электрического оборудования – даже в том случае, если линия питания будет повреждена.

Между тем есть две причины, из-за которого TN-S не получила широкого распространения в России. Первая – российская энергетика в основном ориентирована на 4-проводные схемы 3-фазного электроснабжения. Вторая причина заключается в дороговизне использования системы заземления TN-S.

При монтаже в ходе подключения трех фаз нужно будет использовать 5 проводов для присоединения оборудования к источнику питания. При однофазном подключении потребуется 3 провода. Из-за распространенности в России 4-проводных схем для трех фаз применение TN-S будет нецелесообразно, так как в этом случае нужно будет протягивать от трансформаторной подстанции отдельную линию, состоящую из 5 проводов.

В новой редакции ПУЭ, а также в ГОСТ Р50571 есть указание о монтаже системы TN-S на объектах, требующих высокой степени электробезопасности. Также в данных регламентирующих документах предписывается ее обустройство при строительстве и капитальном ремонте зданий.

Принцип действия сетей с глухозаземленной нейтралью

Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:

  • Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
  • Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
  • Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
  • В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.

В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.

Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.

Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.

Движение тока при КЗ на корпус

Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.

При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.

Эффективно заземленная

Режимы работы нейтралей в электроустановках выше 110 кВ реализованы представленным способом, что обеспечивает требуемые условия защиты сети и безопасности. Нулевая точка трансформатора заземляется на контур или через специальное устройство под названием «ЗОН-110 кВ». Последнее влияет на чувствительность срабатывания защит.

При падении провода создается потенциал между заземлителем и точкой обрыва. Из-за этого срабатывает релейная защита. Отключение производится с минимальной выдержкой времени, после чего включается вновь. Это связывается с тем фактом, что на работоспособность могла повлиять ветка дерева или птица. Повторное включение (АПВ) позволяет выявить реальность повреждения. К преимуществам необходимо отнести следующие моменты:

Относительно низкая стоимость, которая позволяет дешевле выстраивать высоковольтные сети. Следует отметить, что линии электропередач также имеют три провода вместо четырех, что является отличительной особенностью.
Повышенная надежность в сочетании с безопасностью. Это считается важным критерием, который определяет выбор представленного вида нейтрали.

Недостатков практически нет. На практике считается, что это идеальный вариант для высоковольтных сетей.

Требования ПУЭ к сетям

Для сетей с эффективно изолированной нейтралью ПУЭ регламентирует максимальное сопротивление заземления, не превышающего 0,5 Ом. При этом учитывается естественное заземление. А сопротивление искусственных заземлителей не должно быть более 1 Ом.

Это справедливо для установок свыше 1000 В, режим токов КЗ на землю у которых равен или превышает значения 500 А. При этом следует учитывать, что ЭИН и глухозаземленная нейтраль имеют аналогичные схемы без существенных отличий. Такая схема показана на рисунке снизу.

Эффективно заземления нейтраль и глухозаземленная схема заземления позволяют предупредить дуговые перенапряжения. Однако, они относятся к системам с большими токами короткого замыкания на землю (больше или равно 500А).

Для уменьшения токов КЗ используют искусственное увеличение нулевой последовательности. Для этого на подстанции заземляется только часть нейтралей трансформаторов, или нейтрали заземляются через резистор.

В результате увеличивается напряжение на неповрежденных проводниках. К наиболее тяжелым авариям относят межфазное короткое замыкание. При этом, напряжение и токи короткого замыкания будут меньше, чем при однофазном КЗ.

Поэтому расчеты выполняются на основании больших значений, т.е. однофазного короткого замыкания.

Эффективно заземленная нейтраль предназначена для высоковольтных сетей 110 кВ и более. Но допускается использовать такую схему и для напряжения менее 1 000 В. Ее применяют там, где отсутствуют и не предвидится монтаж электроустановок, в которых может возникнуть пожар или устройства, которые могут выйти из строя или взорваться.

Другими словами, ЭЗН применяется в сетях с напряжением менее 1000 В, при условии отсутствия взрыво- и пожароопасных приборов.

Эффективно используются в городских электрических сетях. Особенность работы таких линий заключается в том, что при коэффициенте замыкания на землю менее единицы, можно применить кабель, рассчитанный на напряжение 6 кВ в сетях с напряжением 10 кВ.

Это позволяет передавать большую мощность с коэффициентом 1,73. При этом замена кабеля и коммутационной аппаратуры не требуется.

Начинающим электрикам о заземлении

Обычно нулевой рабочий и заземляющий провод ответвляются от общего провода (PEN-проводника) в элеткрощитах (щитках, шкафах). Запрещено электрически соединять нулевой рабочий и заземляющий провода после того, как они разветвились от общего провода (рис. 13-2). (ПУЭ 1.7.135.) Почему?

Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Новости Электротехники №5(23) 4 режима Заземления нейтрали в сетях 6-35 кВ Если при таком замыкании человек, стоящий на земле, коснётся другой фазы, это будет для него смертельно опасно — он окажется под линейным напряжением, то есть под напряжением между двумя фазами рис. Спрашивайте, я на связи!

Через низкоомное сопротивление

Заземление нейтрали с помощью небольшого по номинальной величине резистора широко практикуется лишь в нескольких странах (в России и Белоруссии, в частности).

При этом более логичным кажется использование в этих цепях высокоомного резистора (RB-режим), обеспечивающего низкий уровень перенапряжений в режиме ОЗЗ.

Другие типы заземления нейтрали предполагают использование комбинированных вариантов её подключения с использованием индуктивности (LB плюс RB-режимы).

Но при внимательном исследовании этих подходов выясняется, что высокоомные резисторы отличаются не только значительными габаритами, но и имеют приличную массу и стоимость.

Рассмотренный выше вариант установки дугогасящих реакторов также имеет свои особенности и характерные для него недостатки.

Вследствие этого перед выбором режима с низкоомным резистором должны быть проведены всесторонние исследования и расчёты, учитывающие все указанные выше факторы.

Известны два способа реализации низкоомного заземления, один из которых предполагает установку в этих цепях резистивного элемента, обеспечивающего срабатывание защиты по току при ОЗЗ.

При втором подходе используется заземлённые через индуктивность схемы, рассчитанные на защиту от двойных фазных замыканий.

Резистивный вариант учитывает дополнительные токовые составляющие в нейтрали, превышающие ёмкостные значения ОЗЗ приблизительно в 3 и более раз.

В схемах с реактивным (индуктивным) заземлением уровень этих составляющих не должен превышать суммы значений токов срабатывания от двойных замыканий и ёмкостного КЗ при ОЗЗ.

Отметим также, что согласно ПУЭ рассматриваемые режимы работы принято делить на кратковременные и длительные. В последнем случае элементы заземления размещаются в цепочке соединения с нейтралью на постоянной основе.

Использование этого способа подключения в соответствии с требованиями безопасности допускается лишь при достаточно качественном заземлении (RЗ ≤ 0,5 Ома), что нецелесообразно как по экономическим соображениям, так и по трудовым затратам.

В подавляющем большинстве электросетей (до 1 кВ) применяется глухозаземленная нейтраль, поскольку такое исполнение наиболее оптимально для действующих требований электробезопасности. Учитывая распространенность этой схемы заземления нейтрали, имеет смысл подробно ознакомиться с ее устройством, принципом работы и техническими особенностями, а также основными требованиями ПУЭ к электроустановкам до 1 кВ.

Виды нейтралей в электрических сетях

Электрические сети, как известно, делятся в зависимости от класса напряжения – до и выше 1000В.

Нейтраль – это общая точка обмоток у трансформаторов и генераторов, соединенных в звезду.

Если же схема обмоток треугольник и необходим ноль, то можно вспомнить про схему «скользящий треугольник». Будем рассматривать только сети переменного тока.

Виды заземления нейтрали в сетях до 1кВ

В электрических сетях напряжением до 1000В принято использовать три системы заземления нейтрали – это TN, IT, TT. Каждая из букв несет определенный смысл, разберемся:

  • 1-ая буква описывает способ заземления нейтрали источника питания
    • T (terra) – нейтраль глухозаземленная
    • I (isolate) – нейтраль изолирована (и – изолирована, легко запомнить)
  • 2-ая буква показывает способ заземления открытых проводящих частей (ОПЧ) с землей
    • N (neutral) – ОПЧ заземлены через глухозаземленную нейтраль источника питания
    • T – ОПЧ заземлены независимо от источника питания

В свою очередь система TN делится на три подсистемы – TN-C, TN-S и TN-C-S. В рамках данной подсистемы третьи буквы (C — combine, S — separe) обозначают совмещение или разделение в одном проводе функций нулевого защитного (PE) и нулевого рабочего (N) проводника.

Рассмотрим теперь каждую систему более подробно.

Система заземления TN

В этой системе нейтраль глухозаземлена, а открытые проводящие части заземлены через эту глухозаземленную нейтраль.

Глухозаземленная – это значит что нейтраль присоединена непосредственно к заземляющему устройству (болтом, сваркой) или через малое сопротивление (трансформатор тока).

В сетях до 1кВ глузозаземленная нейтраль используется для питания однофазных и трехфазных нагрузок.

Система заземления TT

Система TT предполагает, что нейтраль источника питания глухозаземлена, а ОПЧ оборудования заземлены заземляющим устройством электрически несвязанным с нейтралью источника. То есть защитный PE-проводник создается у самого потребителя, а не идет от источника питания.

Система заземления IT

В системе IT нейтраль генератора или трансформатора изолирована или заземлена через устройства, имеющие высокое сопротивление, а ОПЧ заземлены независимо.

Эта система не рекомендуется для жилых зданий, используется там, где при первом замыкании на землю не требуется перерыв питания.

Это могут быть электроустановки с повышенными требованиями надежности снабжения электроэнергией.

Виды заземления нейтрали в электросетях выше 1кВ

В сетях напряжением выше 1000В используется изолированная (незаземленная) нейтраль, эффективно заземленная нейтраль и резонансно-заземленная нейтраль. Глухозаземленная нейтраль используется только в сетях до 1кВ.

Сети с незаземленной (изолированной) нейтралью

Исторически первая система заземления. Нейтральная точка источника питания не присоединена к заземляющему устройству. Обмотки соединены в треугольник и выходит, что нулевая точка отсутствует. Применяется на напряжение 3-35кВ.

Сети с эффективно-заземленной нейтралью

Этот вид заземления используется в сетях напряжением выше 110кВ.

Достоинство заключается в том, что при однофазных замыканиях на неповрежденных фазах напряжение относительно земли будет равно 0,8 междуфазного в нормальном режиме работы.

В этой системе сам контур заземления выполняется с учетом протекания больших токов КЗ, что делает его сложным и дорогим.

Сети с нейтралью, заземленной через резистор или реактор

Применяется в сетях 3-35кВ. Используется для уменьшения величины токов КЗ. Исторически был вторым способом заземления нейтрали. Заземление через резистор используется во всем мире, через реактор – в странах бывшего союза.

Заземление через реактор – при отсутствии замыкания ток через реактор мал.

Когда происходит замыкание фазы на землю, то через место повреждения течет емкостной ток КЗ и индуктивный ток реактора.

Если их величина равна, то в месте замыкания отсутствует ток (явление резонанса).

Заземление через резистор бывает низкоомным и высокоомным. Разница в величине тока, создаваемым резистором при замыкании на землю.

Высокоомное применяется в сетях с малыми емкостными токами, в этом случае замыкание можно не отключать немедленно.

Низкоомное заземление наоборот используется при больших емкостных токах.

Выбор виды заземления нейтрали зависит от следующих факторов:

  • величина емкостного тока сети
  • допустимая величина однофазного замыкания
  • возможности отключения однофазного замыкания
  • вида и типа релейных защит
  • безопасности персонала
  • наличия резерва

Сеть с глухозаземленной нейтралью

Рядовые потребители электрической энергии редко понимают, что источником тока в розетке являются силовые трансформаторы. При соединении трёхфазных обмоток трансформатора в «звезду» появляется совместная точка. Нейтраль – так она называется. При соединении нейтрали с контуром заземления непосредственно у источника появляется глухозаземленная нейтраль.

Наибольшая область применения систем с глухозаземленной нейтралью – напряжение до 1000 Вольт (так называемое низкое напряжение). Электрические сети городов и посёлков, дачные домики и элитные коттеджи – все они запитываются от силовых трансформаторов с заземлѐнной нейтралью.

Особенности конструктива

Конструктивной особенностью глухозаземленной нейтрали является наличие фазного и линейного напряжения. Источники электрической энергии, используемые в рассматриваемых электроустановках, обладают тремя силовыми: фазными концами и одним нейтральным – нулевым. Разность потенциалов, появляющаяся между фазными проводами, называется линейным напряжением, а между одним из фазных и нулевым – фазным.

По величине показателя линейного напряжения говорят о напряжении всей электросети. В нашей стране оно зафиксировано на значениях, равных 220В, 380В и 660В.

√3 раз – такова разница между фазным и линейным напряжением. Соответственно, фазное напряжение будет принимать вид 127 В, 220 В и 380 В. Самое распространённая величина номинального напряжения – 380 В. При линейном напряжении 380 В фазное равно 220 В.

Электрическую сеть с нейтралью, заземлённой непосредственно рядом с источником, можно использовать для электроснабжения трехфазных нагрузок на напряжение 380 В и однофазных на напряжение 220 В. Для последних подключение производится между «фазой» и «нулём». Распределение однофазных потребителей производят равномерно по фазам А, В и С во избежание перекоса.


Контур заземления ТП

Любая трансформаторная подстанция с действующим трансформатором обязана быть окружена контуром заземления. Контур заземления трансформаторной подстанции – это таким образом соединённые между собой металлические заземлители, заглублённые в грунт, чтобы сопротивление их не превышало 4-х Ом при номинальном напряжении 380 В. Это значение закреплено в главном нормативном документе электротехники – ПУЭ.

От контура заземления подстанции делаются выводы для присоединения в распределительном устройстве к специальной металлической полосе – нулевой шине. К ней же подключается нулевой вывод трансформатора. У отходящих кабельных линий соответствующие жилы так же заводятся на эту шину. Фазные жилы «сажаются» на коммутационные аппараты.

Кабели, выходящие из кабельного полуэтажа подстанции, должны быть четырёхжильными. В давно введённых в эксплуатацию электроустановках встречаются кабели с тремя жилами и оболочкой из алюминия. В этом случае она используется как нулевой проводник.

Для принятия напряжения от сетевой организации каждый потребитель обязан организовать у себя на объекте вводное распределительное устройство 0,4 кВ (ВРУ). В нем необходимо предусмотреть нулевую шину соответствующего сечения. К ней присоединяются все нулевые жилы подходящих и отходящих кабелей. Повторное заземление ВРУ тоже заводится на нулевую шину.

Подключение с помощью низкоомного сопротивления

Среди многих видов нейтралей часто используется заземление через резистор с незначительной номинальной величиной. Они нашли широкое применение на территории Беларуси, России. Логично в таких схемах задействовать высокоомный резистор (RB-режим), который задает низкие уровни перенапряжений при ОЗЗ.

В других случаях при заземлении нейтральной точки задействуются комбинированные способы ее подсоединения посредством применения индуктивности (RB-режим и LB).

Более подробное изучение обозначенных подходов показывает, что резисторы высокоомного типа характеризуются внушительными размерами. К тому же они отличаются значительными ценами и массой. Однако и обустройство дугогасящих реакторов отличается своими особенностями и недостатками. Поэтому при выборе режима, поддерживаемого низкоомным резистором, следует провести тщательные расчеты и исчисления с учетом обозначенных факторов.

Существует два типа проведения низкого заземления. В первом случае выполняется установка резонансного резисторного приспособления, с помощью которого срабатывает защита от токов при ОЗЗ. Что касается второго варианта, он предполагает использование заземленных схем посредством индуктивности. Они направлены на обеспечение защиты в случае фазных двойных замыканий.

При резистивном подключении стоит принимать во внимание дополнительные токи в нейтрали, которые могут стать причиной прерывания емкостных значений ОЗЗ до 3 раз и более. Индуктивные или реактивные схемы по уровню своего заземления не должны превышать общее значение электротоков, исходящих от двойных замыканий. Исходя из ПУЭ, обозначенные выше рабочие режимы могут быть кратковременными или длительными

Последний вариант предполагает расположение заземляющих деталей в единую цепь, в которой нейтраль функционирует на постоянной основе

Исходя из ПУЭ, обозначенные выше рабочие режимы могут быть кратковременными или длительными. Последний вариант предполагает расположение заземляющих деталей в единую цепь, в которой нейтраль функционирует на постоянной основе.

Именно такой способ подключения, на что указывают правила устройства электрических установок, допустим только при выполнении качественного заземления с показателем RЗ ≤ 0,5 Ом. Подобный подход эффективен с точки зрения трудовых затрат и экономических соображений.

Как же подключить однофазную нагрузку в системе с изолированной нейтралью?

Здесь варианта два:

1)       На нефтяных судах часто есть две параллельные трехфазные линии, линия 0,4 кВ 3 фазы и 230 В 3 фазы. Чтобы подключить прибор, предназначенный для использования в сети 230В, нужно включить его в сеть 230 В МЕЖДУ ДВУМЯ ФАЗАМИ, т.е. в линейное напряжение.

2)       Использовать трансформатор, например понижающий 3Ф 400В / 3Ф 230 В. С трансформатором тоже два варианта, после него так же может быть система IT, либо трансформатор может обеспечить искусственную нейтраль на вторичной обмотке.

С подключением электродвигателей, клапанов и тому подобного, проблем обычно не возникает, а вот с автоматикой могут быть проблемы. Они связаны с тем, что не все приборы корректно работают при включении их питания в линейное напряжение 230 В (между фазами). Если столкнулись с этой проблемой, тут можно выйти из положения, либо заменой прибора, либо используя маломощный трансформатор с искусственным нолём после вторичной обмотки.

Теоретически да, прибору всё равно, откуда берётся напряжение 220В. А на практике, например, вместо измерения сигнала 4-20 мА какую-то ересь начинают показывать, при том, что датчики заведомо рабочие. Включаешь в обыкновенное фазное напряжение – всё работает. Видимо, что-то с архитектурой конкретных приборов не то. Не часто бывает, но мне пару раз попадалось.

Оборудование и средства для измерения сопротивления заземления

Основным прибором, которым производятся измерения сопротивления растекающимся токам, является измеритель заземления ИС-10. Данный прибор работает в пяти диапазонах измерения, что объясняет его широкое применение. Минимальным диапазоном является сопротивление от 0,01 до 9,99 Ом, затем следуют диапазоны 0,1–99,9 Ома, 1–999 Ом, 0,01–9,99 кОма. Максимальное сопротивление, определяемое этим прибором, составляет диапазон от 1 до 999 мОм. В сочетании с прибором для измерений используются выносные токовые и потенциальные электроды.

Следует отметить, что измерительная схема заземления собирается по строгим правилам – соединительные проводники прибора, в первую очередь, к токовым и потенциальным электродам, затем к прибору и в последнюю – к заземлителю.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: