Модуляция сигналов
Все вышеперечисленные способы передачи данных связаны с таким явлением, как модуляция (для цифровых сигналов — манипуляция). Зачем она нужна?
Как известно, электромагнитные волны (с помощью которых переносятся разные виды сигналов) склонны к затуханию, а это существенно уменьшает дальность их передачи. Чтобы этого не произошло, низкочастотные колебания переносятся в область длинных высокочастотных волн. Это явление и называется модуляцией (манипуляцией).
Помимо увеличения расстояния передачи данных, благодаря ей повышается помехоустойчивость сигналов. А также появляется возможность одновременно организовывать сразу несколько независимых каналов передачи информации.
Сам процесс выглядит следующим образом. В прибор, именуемый модулятором, поступают одновременно два сигнала: низкочастотный (несет определенную информацию) и высокочастотный (безинформационный, зато способен передаваться на длинные дистанции). В этом устройстве они преобразуются в один, который одновременно совмещает в себе достоинства их обоих.
Виды выходных сигналов зависят от измененного параметра входного несущего высокочастотного колебания.
Если оно гармоническое – такой процесс модуляции именуется аналоговым.
Если периодическое – импульсным.
Если несущим сигналом является просто постоянный ток – такая разновидность называется шумоподобной.
Первых два вида модуляции сигналов, в свою очередь, делятся на подвиды.
Аналоговая модуляция бывает такой.
- Амплитудная (АМ) – изменение амплитуды несущего сигнала.
- Фазовая (ФМ) – меняется фаза.
- Частотная – влиянию подвергается только частота.
Виды модуляции сигналов импульсных (дискретных).
- Амплитудно-импульсная (АИМ).
- Частотно-импульсная (ЧИМ).
- Широтно-испульсная (ШИМ).
- Фазо-импульсная (ФИМ).
Рассмотрев, какие существуют способы передачи данных, можно сделать вывод, что, независимо от их вида, все они играют важную роль в жизни человека, помогая ему всесторонне развиваться и защищая от возможных опасностей.
Что касается аналогового и цифрового сигналов (с помощью которых передается информация в современном мире) то, вероятнее всего, в ближайшие двадцать лет в развитых странах первый будет практически полностью вытеснен вторым.
Определения
Термин цифровой сигнал имеет связанные определения в разных контекстах.
В цифровой электронике
Пять уровня РАМ цифровой сигнал
В цифровой электронике цифровой сигнал представляет собой последовательность импульсов ( сигнал с амплитудно-импульсной модуляцией ), то есть последовательность прямоугольных электрических импульсов фиксированной ширины или световых импульсов, каждый из которых занимает один из дискретного числа уровней амплитуды. Особым случаем является логический или двоичный сигнал , уровень которого варьируется от низкого до высокого.
Последовательности импульсов в цифровых схемах обычно генерируются устройствами на полевых транзисторах металл-оксид-полупроводник (MOSFET) из-за их высокой скорости электронного переключения и возможности крупномасштабной интеграции (LSI). Напротив, биполярные транзисторы медленнее генерируют аналоговые сигналы, напоминающие синусоидальные волны .
В обработке сигналов
При обработке сигналов цифровой сигнал представляет собой абстракцию, дискретную по времени и амплитуде, что означает, что он существует только в определенные моменты времени.
При цифровой обработке сигнала цифровой сигнал представляет собой дискретизируемый и квантованный физический сигнал. Цифровой сигнал — это абстракция, дискретная по времени и амплитуде. Значение сигнала существует только через регулярные интервалы времени, так как только значения соответствующего физического сигнала в эти дискретизированные моменты важны для дальнейшей цифровой обработки. Цифровой сигнал — это последовательность кодов, составленная из конечного набора значений. Цифровой сигнал может храниться, обрабатываться или передаваться физически как сигнал с импульсно-кодовой модуляцией (ИКМ).
В коммуникациях
Сигнал с частотной манипуляцией (FSK) чередуется между двумя формами волны и обеспечивает передачу в полосе пропускания. Считается средством передачи цифровых данных .
AMI кодированные цифровой сигнал , используемый в передаче основной полосы частот (линейное кодирование)
В цифровой связи цифровой сигнал — это непрерывный физический сигнал, чередующийся между дискретным числом форм волны, представляющий поток битов . Форма сигнала зависит от схемы передачи, которая может быть либо схемой линейного кодирования , допускающей передачу в основной полосе частот ; или схема цифровой модуляции , позволяющая передавать полосу пропускания по длинным проводам или в ограниченной полосе радиочастот. Такая модулированная несущей синусоида считается цифровым сигналом в литературе по цифровой связи и передаче данных, но рассматривается как поток битов, преобразованный в аналоговый сигнал в электронике и компьютерных сетях.
В системах связи обычно присутствуют источники помех, и шум часто является серьезной проблемой. Влияние помех обычно сводится к минимуму за счет максимально возможной фильтрации мешающих сигналов и использования избыточности данных . Основными преимуществами цифровых сигналов для связи часто считаются помехозащищенность и способность во многих случаях, например, с аудио- и видеоданными, использовать сжатие данных для значительного уменьшения полосы пропускания, требуемой для среды связи.
Аналоговый и цифровой сигналы — различия, преимущества и недостатки
Любой сигнал, аналоговый или цифровой — это электромагнитные колебания, которые распространяются с определенной частотой, в зависимости от того, какой сигнал передается, устройство, принимающее данный сигнал, переводит его в текстовую, графическую или звуковую информацию, удобную для восприятия пользователя или самого устройства. Для примера, телевизионный или радиосигнал, вышка или радиостанция может передавать и аналоговый и, на даный момент, цифровой сигнал. Приемное устройство, получая данный сигнал, преобразует его в изображение или звук, дополняя текстовой информацией (современные радиоприемники).
Звук передается в аналоговой форме и уже через приемное устройство преобразуется в электромагнитные колебания, а как уже говорилось, колебания распространяются с определенной частотой. Чем выше будет частота звука, тем выше будут колебания, а значит звук на выходе будет громче. Говоря общими словами, аналоговый сигнал распространяется непрерывно, цифровой сигнал — прерывисто (дискретно).
Так как аналоговый сигнал распространяется постоянно, то колебания суммируются и на выходе возникает несущая частота, которая в данном случае является основной и на нее осуществляется настройка приемника.
В самом приемнике происходит отделение данной частоты от других колебаний, которые уже преобразуются в звук.
К очевидным недостаткам передачи при помощи аналогового сигнала относятся — большое количество помех, невысокая безопасность передаваемого сигнала, а также большой объем передаваемой информации, часть из которой явлляется лишней.
Если говорить о цифровом сигнале, где данные передаются дискретно, стоит выделить его явные преимущества:
- высокий уровень защиты передаваемой информации за счет ее шифрования;
- легкость приема цифрового сигнала;
- отсутствие постороннего «шума»;
- цифровое вещание способно обеспечить огромное количество каналов;
- высокое качество передачи — цифровой сигнал обеспечивает фильтрацию принимаемых данных;
Для преобразования аналогового сигнала в цифровой и наоборот испльзуются специальные устройства — аналого-цифровой преобразователь (АЦП) и цифро-аналоговый преобразователь (ЦАП). АЦП устанавливается в передатчике, ЦАП установлен в приемнике и преобразует дискретный сигнал в аналоговый.
Что касается безопасности, почему цифровой сигнал является более защищенным, чем аналоговый. Цифровой сигнал передается в зашифрованном виде и устройство, которое принимает сигнал, должно иметь код для расшифровки сигнала.
Подведем итог, основное различие между аналоговым и цифровым сигналом заключается в структуре передаваемого сигнала. Аналоговые сигналы представляют из себя непрерывный поток колебаний с изменяющимися амплитудой и частотой. Цифровой сигнал представляет из себя дискретные колебания, значения которых зависят от передающей среды.
Ключевые отличия
Рассматриваемые виды технологий характеризуются рядом особенностей и отличий. В этом требуется разбираться многим современным людям.
По способу передачи данных
Один сигнал отличается от другого по особенностям передачи информации. К примеру, звук и изображение представляют собой аналоговые сигналы. Камера и микрофон воспринимают окружающую действительность, трансформируя ее в электромагнитные колебания. На частоту колебаний на выходе влияет частота звука и света. На амплитуде передачи отражаются яркость и громкость.
Распространение электромагнитных колебаний может нарушаться из-за грозы, рельефа, облаков. Также к возможным помехам относят ветер и рельеф местности. Частота и амплитуда часто подвергаются искажениям. Как следствие, сигнал от передатчика к приемнику поступает с изменениями.
Изображение и голос аналогового сигнала воспроизводятся с искажениями, которые связаны с помехами. При этом фоном могут быть хрипы, искажение цветов, шипение. Чем ниже качество приема, тем более четкими получаются посторонние эффекты. Если информация дошла, то ее хотя бы как-то удается увидеть и услышать.
При цифровой передаче звук и изображение перед выходом в эфир оцифровываются. Потому к приемнику они поступают без искажений. При этом воздействие внешних факторов является минимальным. Цвет и звук имеют высокое качество или их вообще нет.
Сигнал обязательно передается на определенное расстояние. Однако для передачи на внушительную дистанцию требуется целый ряд ретранслирующих устройств. Потому для распространения сотового сигнала антенны располагают максимально близко друг к другу.
По применению
Разница между рассматриваемыми типами сигналов затрагивает и сферу их применения. Прежде всего, их используют при создании вычислительной техники. Впервые аналоговые устройства для вычислений придумали еще в тридцатые годы прошлого века. Они представляли собой весьма примитивные приборы, которые предназначались для реализации специализированных задач. Аналоговые компьютеры были придуманы в сороковых годах, а получили широкое распространение – в шестидесятых.
Иногда аналоговые компьютеры применяют и сегодня. Они могут использоваться для решения задач, в которых точность обмена результатами вычислений не особенно важна. При этом в начале двадцать первого века на смену аналоговым пришли цифровые технологии. При создании вычислительной техники смешанные аналоговые и цифровые сигналы используют только для обработки информации на основе ряда микросхем.
Еще одним примером рассматриваемых технологий являются микшеры и синтезаторы звука. При этом сегодня для изготовления таких устройств преимущественно применяют цифровые технологии. Использование аналоговых сигналов обычно связано с предрассудками и привычками. Бытует мнение, что цифровая запись пока не сумела добиться требуемого эффекта полноценной передачи музыки. Он характерен только для аналоговых технологий.
Полное руководство по выбору и эксплуатации
Цифровая стереосистема не может обойтись без цифро-аналогового преобразователя (ЦАП’а, DAC’а) – компонента, преобразующего двоичный код в аналоговый сигнал. На сегодня именно digital-направление в Hi-Fi/High End развивается быстрее всего – надеемся, что данная мини-энциклопедия ЦАП’ов послужит надежным подспорьем при выборе техники себе домой.
Характеристики ЦАП’а
— разрядность – то есть, количество уровней аналогового сигнала, которое может воспроизводить ЦАП. Для N разрядного ЦАП число уровней аналогового сигнала равно 2N (включая значение для нулевого кода);
— частота дисктеризации – максимальная частота, с которой можно изменять входной код ЦАП, получая при этом корректный результат на выходе;
— соотношение «сигнал/шум» или SNR — отношение амплитуды восстанавливаемого гармонического сигнала к сумме амплитуд всех остальных гармоник в спектре выходного сигнала, кроме кратных;
— типы поддерживаемых форматов данных.
Форматы цифровых данных
— форматы без сжатия данных или «сырые» — сюда относятся WAV, AIFF, RAW, DSD, DXD;
— форматы со сжатием без потерь (APE, FLAC, MQA, WavPack, Monkey’s Audio и другие);
— форматы со сжатием с потерями (MP3, AAC, Vorbis и прочие).
Виды цифро-аналоговых преобразователей
— широтно-импульсные модуляторы: источник тока или напряжения включается на время, а полученная импульсная последовательность фильтруется;
— циклические ЦАП’ы;
— конвейерные ЦАП’ы;
— и, наконец, столь хорошо знакомые всем аудиофилам цифро-аналоговые преобразователи передискретизации – например, дельта-сигма ЦАП’ы.— бинарные, в которых соотношение двух соседних взвешивающих элементов равно 2, а веса элементов, формирующих выходной сигнал, в нормированном виде, будут равны 1, 2, 4, 8, 16 и так далее, система управляется бинарным кодом;
— унитарные — соотношение двух соседних взвешивающих элементов равно единице, а управление системой ведется унитарным кодом;
— Фибоначчи – в данном случае сигнал формируется в системе счисления Фибоначчи;
— сегментные – в них цифровой код разделяется на группы, которые обрабатываются независимо. взвешивающие (каждому биту цифрового сигнала соответствует резистор или источник тока) – достаточно быстрые, но менее точные, так как для функционирования требуется набор различных прецизионных источников или резисторов; их разрядность ограничена восемью битами;
— лестничные (R2R-схемы) – в них значения создаются в матрице (токов или напряжений) постоянного импеданса, набранной из резисторов с сопротивлениями R и 2R.
Зачем в аудиосистеме отдельный ЦАП?
— отсутствие поддержки форматов данных – недорогие устройства могут «не уметь» работать с современными сигналами, скажем РСМ 32/768 или DSD256, что доставит неудобства в функционировании;
— набора фирменных «родовых болячек» цифрового звука – прежде всего искажений из-за потери синхронизации (эффекта джиттера, дрожания сигнала) – несоблюдения временных интервалов.
Примеры цифро-аналоговых преобразователей в различных ценовых категориях
Parasound Z-dac v2 (53 400 руб.) основан на схемах Texas Instruments TAS1020B (USB Streaming Controller), Analog Devices AD1895 (Sample Rate Converter) и Analog Devices AD1853 (D to A Converter).Chord Electronics Qutest (135 400 руб.) – в устройстве применена схема Xilinx Artix 7 (XC7A15T) FPGA, аппарат поддерживает РСМ 32/768 и DSD512.Mytek Brooklyn DAC+ (275 000 руб.) использует чип Sabre 9028 Pro 32/384 и поддерживает DSD до DSD256.MSB Reference (3 199 999 руб.) – пример высокотехнологичного устройства: 4 гибридных мультибитных модуля c эффективyым разрешением 28,5 бит на канал (384 кГц), цифровой фильтр Shark DSP 80 бит, сверхстабильный тактовый генератор Femto 140 Clock.Audio Note Fifth Element (12 300 300 руб.) – один из самых дорогих ЦАП’ов в мире, построенный на базе классического R2R-чипа Analog Devices AD1865N, ламп 1 x 5814a, 1 x 6463, 1 x EF800, 1 x 6X5 и полностью серебряных трансформаторов.Денис Репин
24 мая 2020 года
Виды сигналов
Сигнал это изменение физической величины во времени и пространстве. По сути это коды для обмена данными в информационной и управленческой средах. Графически любой сигнал можно представить в виде функции. По линии на графике можно определить тип и характеристики сигнала. Аналоговый будет выглядеть как непрерывная кривая, цифровой как ломаная прямоугольная линия, скачущая от ноля до единицы. Все, что мы видим глазами и слышим ушами поступает в виде аналогового сигнала.
Аналоговый сигнал
Зрение, слух, вкус, запах и тактильные ощущения поступают нам в виде аналогового сигнала. Мозг командует органами и получает от них информацию в аналоговом виде. В природе вся информация передаётся только так.
В электронике аналоговый сигнал основан на передаче электричества. Определённым величинам напряжения соответствуют частота и амплитуда звука, цвет и яркость света изображения и так далее. То есть цвет, звук или информация являются аналогом электрического напряжения.
При этом неважно идёт сигнал по проводам или радио. Передатчик непрерывно отправляет, а приёмник обрабатывает аналоговый вид информации
Принимая непрерывный электрический сигнал по проводам или радиосигнал через эфир приёмник преобразует напряжение в соответствующий звук или цвет
Изображение появляется на экране или звук транслируется через динамик
Принимая непрерывный электрический сигнал по проводам или радиосигнал через эфир приёмник преобразует напряжение в соответствующий звук или цвет. Изображение появляется на экране или звук транслируется через динамик.
Дискретный сигнал
Вся суть кроется в названии. Дискретный от латинского discretus, что означает прерывистый (разделённый). Можно сказать, что дискретный повторяет амплитуду аналогового, но плавная кривая превращается в ступенчатую. Изменяясь либо во времени, оставаясь непрерывной по величине, или по уровню, не прерываясь по времени.
Так, в определенный период времени (например миллисекунду или секунду) дискретный сигнал будет какой-то установленной величины. По окончании этого времени он резко изменится в большую или меньшую сторону и останется таким ещё миллисекунду или секунду. И так беспрерывно. Поэтому дискретный это преобразованный аналоговый. То есть полпути до цифрового.
Цифровой сигнал
После дискретного следующим шагом преобразования аналогового стал цифровой сигнал. Главная особенность – либо он есть, или его нет. Вся информация преобразуется в сигналы ограниченные по времени и по величине. Сигналы цифровой технологии передачи данных кодируются нолем и единицей в разных вариантах. А основой является бит, принимающий одно из этих значений. Бит от английского binarydigit или двоичный разряд.
Но один бит имеет ограниченную возможность для передачи информации, поэтому их объединили в блоки. Чем больше битов в одном блоке, тем больше информации он несёт. В цифровых технологиях используют биты объединенные в блоки кратные 8. Восьмибитовый блок назвали байтом. Один байт небольшая величина, но уже может хранить зашифрованную информацию о всех буквах алфавита. Однако при добавлении всего одного бита число комбинаций ноля и единицы удваивается. И если 8 битов делает возможным 256 вариантов кодировки, то 16 уже 65536. А килобайт или 1024 байт и вовсе немаленькая величина.
В большом количестве объединённых байтов хранится много информации, чем больше комбинаций 1 и 0 тем больше закодировано. Поэтому в 5 – 10 МБ (5000 – 10000 кБ) имеем данные музыкального трека хорошего качества. Идём дальше, и в 1000 МБ закодирован уже фильм.
Но так как вся окружающая людей информация аналоговая, то для её приведения в цифровой вид нужны усилия и какое-либо устройство. Для этих целей был создан DSP (digital signal processor) или ЦПОС (цифровой процессор обработки сигналов). Такой процессор есть в каждом цифровом устройстве. Первые появились еще в 70-е годы прошлого века. Методы и алгоритмы меняются и совершенствуются, но принцип остаётся постоянным – преобразование аналоговых данных в цифровые.
Обработка и передача цифрового сигнала зависит от характеристик процессора — разрядности и скорости. Чем они выше, тем качественней получится сигнал. Скорость указывается в миллионах инструкций в секунду (MIPS), и у хороших процессоров достигает нескольких десятков MIPS. Скорость определяет сколько единиц и нолей сможет устройство «запихнуть» в одну секунду и качественно передать непрерывную кривую аналогового сигнала. От этого зависит реалистичность картинки в телевизоре и звука из динамиков.
2.2 Цифровой сигнал
Цифровой сигнал —
сигнал данных, у которого каждый из
представляющих параметров описывается
функцией дискретного времени и конечным
множеством возможных значений.
Сигналы представляют
собой дискретные электрические или
световые импульсы. При таком способе
вся емкость коммуникационного канала
используется для передачи одного
сигнала. Цифровой сигнал использует
всю полосу пропускания кабеля.
Полоса
пропускания — это разница между
максимальной и минимальной частотой,
которая может быть передана по кабелю.
Каждое устройство в таких сетях посылает
данные в обоих направлениях, а некоторые
могут одновременно принимать и передавать.
Дискретный цифровой
сигнал сложнее передавать на большие
расстояния, чем аналоговый сигнал,
поэтому его предварительно модулируют
на стороне передатчика, и демодулируют
на стороне приёмника информации.
Использование в цифровых системах
алгоритмов проверки и восстановления
цифровой информации позволяет существенно
увеличить надёжность передачи информации.
Замечание. Следует
иметь в виду, что реальный цифровой
сигнал по своей физической природе
является аналоговым.
Из-за шумов и
изменения параметров линий передачи
он имеет флуктуации по амплитуде,
фазе/частоте (джиттер), поляризации. Но
этот аналоговый сигнал (импульсный и
дискретный) наделяется свойствами
числа.
Сигнал определяется как напряжение или ток, который может быть передан как сообщение или как информация. По своей природе все сигналы являются
аналоговыми, будь то сигнал постоянного илипеременного тока, цифровой или импульсный. Тем не менее, принято делать различие между аналоговыми и
цифровыми сигналами.
Цифровым сигналом называется сигнал, определённым образом обработанный и преобразованный в цифры. Обычно эти цифровые сигналы связаны с реальными
аналоговыми сигналами, но иногда между ними и нет связи. В качестве примера можно привести передачу данных в локальных вычислительных сетях (LAN) или
в других высокоскоростных сетях.
В случае цифровой обработки сигнала (ЦОС) аналоговый сигнал преобразуется в двоичную форму устройством, которое называется аналого-цифровым
преобразователем (АЦП).
После обработки содержащаяся в сигнале информация может быть преобразована обратно в аналоговую форму с использованием
цифро-аналогового преобразователя (ЦАП).
Другой ключевой концепцией в определении сигнала является тот факт, что сигнал всегда несет некоторую информацию. Это ведет нас к ключевой проблеме
обработки физических аналоговых сигналов — проблеме извлечения информации.
Цели обработки сигналов
Главная цель обработки сигналов заключается в необходимости получения содержащейся в них
информации. Эта информация обычно присутствует в амплитуде сигнала (абсолютной или относительной),
в частоте или в спектральном составе, в фазе или в относительных временных зависимостях
нескольких сигналов.
Как только желаемая информация будет извлечена из сигнала, она может быть использована
различными способами. В некоторых случаях желательно переформатировать информацию, содержащуюся
в сигнале.
Различия в использовании оборудования
Многие устройства поставляются со встроенными средствами перевода из аналогового в цифровой. Микрофоны и динамик — прекрасные примеры аналоговых устройств. Аналоговая технология дешевле, но есть ограничение на размер данных, которые могут быть переданы в данный момент.
Цифровая технология произвела революцию в способах работы большей части оборудования. Данные преобразуются в двоичный код, а затем снова собираются в исходную форму в точке приема. Поскольку ими можно легко манипулировать, он предлагает более широкий спектр возможностей. Цифровое оборудование дороже аналогового.